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TRANSIENT CLASSIFIER SYSTEMS AND MAN-MACHINE INTERFACE RESEARCH

‘1 SBIR PHASE I PROJECT SUMMARY

N TOPIC NO.: N86-10 SPONSOR: ONR

§ N

N ¢
b PRESEARCH INCORPORATED, 8500 EXECUTIVE PARK AVENUE, FAIRFAX, VA 22031 '

. 1. Purpose. The purpose of Presearch's Phase I research was to \

g investigate human classification performance and the underlying

: psychophysical models of perception and cognition. The research 3
<, was directed toward the Navy's need for effective acoustic tran- .
N sient classifier systems for advanced ASW programs; wherc effec- )

tiveness must be measured in speed, accuracy, and operability.
JER This basic classification research is also applicable to fields
o such as real-time classification of radar signals, seismic pro-
cessing, and monitoring vibrations for incipient failures and loose
parts at nuclear power plants.

y

* 2. Description of Work. The work performed in Phase 1 consisted
of a pilot psychophysical experiment and automatic classification
algorithm research on the NRL Cray Computer. Our research approach
is to integrate psychophysical perceptual and cognitive models of
human classification into the design of intelligent adaptive transi-
ent detector/classifiers. Central to the research is the trans- )
formation of continuously sampled acoustic data into an efficient '
representation of replicable finite patterns. This Asynchronous

Syntactic Pattern (ASP) sensor concept is used to reduce computer

processing/storage requirements and to simplify human classification
tasks.

Ve

"

(AN .l'/

(R

3. Results. The results of the experiment showed that transient
’ detection and classification performance are highly independent, K
-~ and both are very sensitive to signal-to-noise ratio (SNR). Unknown ;

transients were recognized rapidly; however, performance at low SNR ;
iy was not comparable to that against known transients. Transient :
S specific syntax proved to be an even stronger determinant of perfor-

mance than the known vs. unknown condition. Novice performance in ;
L detecting a target by its transient emissions was comparable to b
o theoretical best current broadband techniques. Experienced sonar X

operators outperformed the novices by 12 dB. —y

b The automatic classification algorithm research demonstrated
v, use of syntactic and semantic state variable feature-space repre- g
sentations to perform computationally efficient classification of [j

s transient patterns (50 times real-time in FORTRAN) and large-scale ;
- reduction of data (500:1). The algorithm recognized many singular -~z

. and correlated transient events. An unexpected and exciting result g 7

- was recognition and modal separation of mixed mode tonal signals as|[™

correlated transients in the time domain.

. Sty Codes

Avaan ey |
|

'.
!

;-
P

. R

......................

T N B N N B N R T LG S R R R A TR G




T TERTURY W T FOTos

el
}
r
PRESEARCH INCORPORATED
B
n TABLE OF CONTENTS
Page
N
§§ SUMMARY ... ... .ttt enenensnonsnossnanansns i
I& LIST OF FIGURES ....... .0ttt itiiiiininenennnnnananas iii
o\ LIST OF TABLES .......iuniirniinnennninnnnenneennenns iv
I 1.0 EXECUTIVE SUMMARY .. .........iitiiititnnnnnnnnncans 1-1
L8 1.1 Background ........c.iitieirinncnsnrnansnananss 1-1
1.2 PUIPOSE ...t iiitntronnnnassnsensasanoasnanesss 1-1
) 1.3 Approach ....... . i, 1-2
w 1.4 Description of Work ......... ... 1-2
= 1.5 Results of Research .......cviviiierninernnenns 1-3
. 1.6 Potential Applications .........c.ceviuienennnn 1-7
W 1.7 CONteNtS ...uueeeeereeeoeononnnanseonssasannns 1-8
r’.(.'
2.0 THEORETICAL FRAMEWORK ...........c.ciiiitnnrncnnenns 2-1
W 2.1 Introduction and Overview ..............000... 2-1
o 2.2 The Research Background of an Automatic
’ Disturbance Monitor ........ccciienvennnnnns 2-1
" 2.3 Noise Tests of the Automatic Disturbance
' o 1 T o ) 2-2
2.4 The Asynchronous Classifier Interface (ACI):
A New Role for ADM ........iiiiierivnnnnnnnns 2-3
. 2.5 The Automatic Processing Side of the ACI ..... 2-17
e 2.6 Interface Requirements of Online Automatic
and Interactive Processing ..........c0iun 2-8
p 2.7 Transient Evaluation Environment ............. 2-12
o 3.0 PILOT PSYCHOPHYSICAL EXPERIMENT ................... 3-1
. 3.1 Background ........c.iiii ittt ie it 3-1
“ 3.2 Experiment 1 .........c.iiieeniniirrcinnnnnaanans 3-4
Y8 3.3 Experiment 2 ......i.ciiiititiiisiacarcnonsenns 3-32
3.4 General Discussion .........iiiiiiiiiienennann 3-47
= 3.5 Attachment A: Student Instructions and
~ Post-Experiment Questionnaire .............. 3-49
‘q 4.0 AUTOMATIC CLASSIFICATION RESEARCH ................. 4-1
5N 4.1 Results of Automatic Classification
<~ Processing ......ciiiiiiiiiiiiiieininennenes 4-2
4.2 Interpretation of Correlated Pulse
A (oF- 8 3 o -3 o 4-15§
> 4.3 Interpretation of Leading Edge
Transients . ..., ittt it nanenanns 4-18
.3 4.4 ConCluSions ......ieiiiineieineenensansononsas 4-23

5.0 REFERENCES . ...... ittt ittt ieetntenennens 5-1




R PR R B T

KL 55

N

3

~ N~
[} '
{38 ]

[}
[T T S N

w (RN N NN NN
] ]
W 0 ~3 O

w
[} ]
[ N
[ =

3-12
3-13
3-14
3-15
3-16
3-17
3-18

4-2

o

.—.-

PRESEARCH INCORPORATED

et
o
v
v
v
LIST OF FIGURES
Page 5
F
Automatic Disturbance Monitor (ADM) :
Architecture ........citieiieriirneenennracsnnnnns 2-5 e
Man-Machine Interface (MMI) Background
Processing System Functions ...........c...0u co 2-6 "
Automatic Feature Discriminator Y
(Background Processing Mode) ....... et e 2-9 .
Interactive On-line Foreground Process ............ 2-10 "
Functional Partition of the Transient !
Evaluation Environment ........... .00 veennn v 2-14
w3
Detection Performance Learning .........cvivvueenn. 3-10 -
Impact of SNR on Detection Performance ............ 3-11 .
Proportion of "Signal Present' Responses .......... 3-13 =
Classification Performance ........cceeeenencennns 3-17 Y
Impact of SNR on Correct Classification of
Known Transients ..........iiiiiiieneiiitennnnnnn 3-20 v
Classification Performance of Known Transients .... 3-21 \
Impact of SNR on Detection Latency ...........co... 3-23
Classification Latency ........coiviieniiienennnnnnns 3-25 \
Comparison of Latency Between Signal and Noise )
RESPONSES . iiiiiiiieeionontnesssnsenosonassnasss 3-28
Detection of Noise and Signals at -4 SNR by
(EXperiment 1) ...iuiivnirinennnenernenneenannnnnns 3-30 K
Comparison of Detection Latency for Known and -
Unknown Signals (Learning Curve) .
(Experiment 1) .......iieiieennennnnneronnnnnsaas 3-31 .
Detection Performance (Learning Curve) ?
(Experiment 2) .......cccuievoenenonnncaasannasaas 3-33
Comparison of Detection Performance for Known )
and Unknown Signals (Experiment 2) .............. 3-35 R
Percentage Indicating Signal Present Responses
(Experiment 2) .....uuiiieieoneeneonnannnoannaenn 3-36
Classification Performance for Known and Unknown
Signals by Group (Experiment 2) ........ e 3-38 s
Classification Performance of Known Transients P
by Signal Type (Experiment 2) ........civvvvunn.. 3-40 ‘
Comparison of Detection Latency for Signals e
and Noise (Experiment 2) .......c.ceeeiinneennnnn. 3-44 \
Classification Latency (Experiment 2) ............. 3-45 ,
Relationship Between Frequency Shift and Pulse Y
Shape ...ttt i i i i i i e e e 4-13 N
Basic Program to Calculate Period of Repetition By
for Intermittent Correlated Pulses .............. 4-19 ~

...;-..



,

#

2; /

) PRESEARCH INCORPORATED \

§ )

\

§

i

‘ LIST OF TABLES '

Page M

. 1,

\’: 3-1 Compa on of Detection Performance on Knowns vs 3

Dy UNKNMOWNS tvititiiiiiineneeenenenrnnocsnnennennnns 3-15 3

3-2 Significant Grouping of Class1f1cat10n -
!! LateNCY tiviieereenneocoasosenocasasesesosnnnnnes 3-26
o' 3-3 Classification Performance Threshold .............. 3-37

!

o 4-1 Pulsed Carriers Feature Attribute Values :

] Measured By: ASP Sensor (Asynchronous

» Syntactic Pattern) ....uuurivnieeeneneeeeennnnnnn 4-4

- 4-2  Pulsed Carriers Sorted by Feature Pattern ......... 4-8 ‘

N 4-3 Multiple Arrival Time Pattern of Correlated 3

- Pulsed Carriers ........iiiiiniiiiiiiinrnnnnnnns 4-10 ]

4-4 Single Discrete Arrivals of Patterns .

- (Multiple Arrivals Not Counted) ................. 4-12 ¢

= 4-5 Correlated Pulse Carriers by Real-Time -
Stacked Feature Correlation .............ccc0vvunn 4-17

A 4-6 Analysis of Feature Correlated Pulsed Peak Delay -
= Time Differentials ......ciitriinineneeennnneeenan 4-20

: 4-7 Leading Edge Transient Feature Pattern and R

_ Binary State Variable of Energy .
i ACtIvVation ... ...ttt it tintnnoninneesanenns . 4-22

W\

2 3

< ]

. -

> .

2 ;

N %

8 :

;
e A
v .
1] A -
-\
‘>
¢
O F

iv




B A

L/

’

o

+
Y

<<’y

7
N

-‘-.'l
R

e W

X,
w

04Y4 ‘A{&’.&;‘

‘fiir

NI IO ey
e ¥y Ralalal

*al® Gl Ul O d e Wak Ead e Bad Ea w2000 0 0 08 80 @ 0"t 2750 0.0 00" 0 0" 2" ) ar bt 2 E atd 8 Bag 4.0 hant0an i 5% A E 0P R0 a2

PRESEARCH INCORPORATED

1.0 EXECUTIVE SUMMARY
1.1 BACKGROUND

Presearch has performed basic research on the detection of
underwater acoustic transients under Internal Research and
Development for the past several years. The research focused on
a time domain based Automatic Disturbance Monitor (ADM) capable
of performing feature recognition of replicable transient events.
This previous research, when applied to certain types of actual
transient data, demonstrated some inherent advantages over more
conventional spectral-domain approaches. This included more
robust and sensitive detection of transients of variable duration,
shape, and bandwidth. Presearch has a strong background in man-
machine interface (MMI) design of displays, controls, and inter-
active decision aids. In the present research we are combining
these capabilities and expanding our basic research of automatic
algorithms and MMI towards an integrated workstation concept for
improving transient classification.

1.2 PURPOSE

Presearch's research is focused on the underlying psycho-
physical models of perception and cognition and their application
to the man-machine interaction required to optimize detection
and human classification performance. Realistic operational
context was used wherever it did not impose unreasonable con-
straints on the basic research.
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1.3  APPROACH

Our research approach is to integrate psychophysical
perceptual and cognitive models of human classification into
intelligent detection/classifier applications. Central to the
research is the idea of immediately transforming continuous
sampled acoustic data into finite patterns by means of an
Asynchronous Syntactic Pattern (ASP) sensor. The idea of
autonomous representation of finite patterns from a data stream
reduces storage requirements and simplifies classification
responses of a human operator. Syntactic and semantic state
variables constitute the central parameters of the asynchronous
interface.

1.4 DESCRIPTION OF WORK

The work includes a psychophysical experiment and auto-
matic algorithm research. The psychophysical experiment was
performed at the Catholic University Human Performance Labora-
tory. Its purpose is to demonstrate a testbed for comparing
alternative detection/classification algorithms and MMI in terms
of the efficiency and reliability of decision performance. Per-
formance is measured by receiver operating characteristics
(ROC), reaction time, and learning curves. Specific objectives
are: (1) assess the impact of signal-to-noise ratio (SNR) on
cognitive models of transient classification, (2) establish per-
formance benchmarks for comparing alternative methodologies, and
(3) evaluate the impact on performance of noise on detection and
classification of known and unknown transient signal patterns.

The automatic classification algorithm research analyzed
unclassified transient acoustic events. The purpose of the
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= >

research was to apply psychophysical models in automatic transi-
ent data pattern analysis, detection, and classification con-
cepts. The goal was automatic feature representation of transi-

S5

ents applied as a self-learning algorithm for identifying the '
feature pattern of correlated transients, and a binary state

et

variable syntax algorithm for recognizing the syntactic pattern
of these transient features. The calculations were performed on

-

~

~ the Cray Computer at the Naval Research Laboratory.

~,

l'

j: 1.5 RESULTS OF RESEARCH

ﬁf 1.5.1 Psychophysical Experiment f

:: Preliminary analysis of the pilot experiment has produced

g the following six significant results regarding detection and

g g g 8

ii classification of underwater transients:

. 1. Transient detection and classification performance is

o

e related to propagation distance and SNR.

A

’) 2. Novices detect and classify unknown transients. This

* implies internal representation and recognition of

% pure noise backgrounds.

‘.“.

.. 3. Information feedback after classification resulted in

o .

3 better performance at low SNR. 4

-

;'; 4. Variance in performance from transient to transient, '
the specific structure (syntax) effect, was much -
stronger than variance between known vs. unknown
groups. )

{]

%
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Detection performance with acoustic transients by
novices was comparable to that expected of broadband
signatures; performance of experienced sonar operators
was 12 dB better.

Detection and classification decisions are inter-
related differently for high and low SNR transient
signals.

1.5.2 Automatic Detection/Classification Experiment

The result of the automatic classification experiment

indicated that signals could be precisely correlated by replica-

tive feature patterns or by matching bit mapped syntax. Infor-

mation about sources could be ascertained by automatically

sensing the features of replicated pulses. The following is a

brief description of the feature classification hierarchy uti-

lized for the preliminary feasibility analysis:

At the top of the feature classification hierarchy are
entities: Leading Edges of long complex episodes;
narrowband Pulsed Carriers; and broadband Pulses.

The second level is described by a set of feature
patterns dependent on pulse shape, dominant frequency,
and frequency shift characteristic.

The third level is a bit-mapped syntactic time-ordered
pattern of a specific feature or feature pattern,.

The following points summarize the results of testing the

automatic classification algorithm:

Y
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Out of six long complex Leading Edge signals examined,
two of them correlated, (a) by extremely precise
feature attribute values at the first pulse of the
wave train, and (b) by 100% bit matching of the syntax
of energy excitations indicating a clear and confirmed
replication of the complex event.

Numerous Pulsed Carriers were sensed. Most were
apparently random perturbation of feature values as
would be expected from chance occurrences in the

random background. In two cases, in the one-minute
sample of data which was analyzed, the same feature
pattern was replicated many times; eight times in one
case; twelve, in the other case. More work needs to

be done to be certain as to whether the repeated
features are due to chance, random multiple occurrences
of a transient pulse, or periodic occurrences which
were randomly modulated above the broadband background.
The latter source would be due to constructive inter-
ference of overtones of different timbre from two
different resonant sources, i.e., like a violin and
oboe emitting nearly the same fundamental mode fre-
quency, but each with its own unique set of harmonics.
The effect could not be produced by feature detection
and classification of white random data. The randomi-
zation of timbre peak occurrences may be due to the

low S/N relative to the broadband background or due to

the effect of sub-harmonics of finite amplitude sources,

The replicated pulse arrivals observed in the minute
sample of broadband data were automatically sensed.
Their time differential matrix was computed. Analysis
of presumed timbre peaks as integer arrivals identified

L-5
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them as due to possibly stable overtones; one with a
timbre peak repetition time of 3.4693 msec; the other

v_9

3.0884 msec. These were sensed in the same overlapping
time interval as distinguishable pulses identifiahle

by their characteristic feature value pattern. The
analysis indicated that time peaks could be timed with
a standard deviation of .2 to .4 msec.

Possible multipath arrivals (energyv from a single
source travelling along different paths) were .len-
tified with an apparent reflection coefficient 3s %, .~
as .95. These are of doubtful validity in that such
effects were observed in random noise tests. More
features would be required for reliable correlation -
multipaths.

Source characteristics were extracted from broadban!

data at very low recognition differentials bv identi-

fying replicated feature patterns in real time. Oniv

a few out of thousands of replications of a heat :
pattern need to be sensed in order to identify such

sources and to identify their carrier frequency and

pulse repetition rate.

Data sampled at 8000 Hz was processed with the auto-
matic classification algorithm in nonoptimized FORTRAN
code at 50 times real time on the NRL Crav Computer.

Automatic feature classification reduced the storage

requirement for data by a factor of 500.

.
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; - Our Automatic Detection/Classification Experiment demon-

) strated the capability of finding sources of unknown transient

ﬁj waveforms in real time by automatically classifying entities, %

- i.e., pulses and complex episodes of pulses. Also, by correlat- h

!! ing replicable features of each entity and by correlating the

nY. time-ordered syntax feature patterns. The purpose of automatic 2

- detection/classification is real-time reduction of data to cues f

t; which support human classification and which trigger action B
based on recognition of important acoustic sources. It does i

;«3 this by extracting cues for immediate consideration; by removing N

known sources of causal uncertainty from the data stream; and by
recognition of replicable patterns as unknown signals subject to
possible semantic association.

'.:.=
b o o

ARo
<

1.6 POTENTIAL APPLICATIONS

.-

This research effort is directly applicable to advanced

submarine, surface ship, air, and surveillance antisubmarine s
E, warfare (ASW) combat system programs. Preliminary analyses of :
- throughput on the Cray and the results of the psychophysical g
' experiment indicate that current processing technology is suffi- _
~ cient to make major strides in: (a) reducing operator workload, E
~ (b) improving initial detection/classification performance, and ;
W (c) solving the ASW false alarm problem, including false alarms ;f
“ from transient detections and unclassified active and/or broad- 2
e band contacts. Other signal processing applications include ﬂ
radar, seismic, and speech. An area of potential commercial o
5 application is incipient failure analysis of nuclear power :
plants and other error-critical physical processes.
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1.7  CONTENTS

Section 2 contains the background and theoretical frame-
work of our research. Section 3 describes the details of our
Psychophysical Experiment. Section 4 describes our automatic
classification research performed on the Cray Computer. Section
S contains the references.
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\ [}
w 2.0 THEORETICAL FRAMEWORK )
‘;3 2.1 INTRODUCTION AND OVERVIEN
g This section describes the background and theoretical

. framework for our transient classifier and man-machine interface

™ (MMI) research.

k)

5.

Central to the research is the idea of immediately trans-

:3 forming continuous sampled acoustic data into finite patterns by 5
means of an Asynchronous Syntactic Pattern (ASP) sensor. The X
:E idea of autonomous representation of finite patterns from a data A
‘ stream reduces storage requirements and simplifies classifica-
§: tion responses of a human operator. The ASP sensors transmit
& much less data; facilitating interactive classification deci- :
. sions by a human operator and/or validating manual detection/ :
i classification decisions. -
g
g! 2.2 THE RESEARCH BACKGROUND OF AN AUTOMATIC DISTURBANCE MONITOR
! Presearch sponsored 3 years of continuing research by Sax
M et al. (ref. 1, 2, 3, 4) on an Automatic Disturbance Monitor f
o (ADM). This research pursued an episodic event automatic detec-
~ tion concept based on time domain pattern features of transient %
. events. A Navy/Industry Cooperative Research and Development \
- (NICRAD) agreement gave Presearch the opportunity to test our Y.
” monitoring device on real acoustic transients. ‘
v
In tests performed on acoustic transients, the largest .
;S transients occurred as episodes with intensities up to S0 dB E
’ above the average broadband background level. These episodes '
o scaled with intensity. The smallest transient waveforms had 5
highest frequency and bandwidth indicating the small spatial
% ]
] A
“» 2-1 J
~; 3
.
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g =X

scale of the acoustic sources. By contrast, larger intensity
transients, up to S0 dB larger than the smallest transients ‘
contained multiple bands of low bandwidth and low frequency.

e

The rise time of leading edges and in some cases the pulses

[ ] composing transient signals rose to full scale and in some cases

¢ (
decayed on a millisecond time scale. This time resolution ;
requirement is the basis of our broadband time domain approach X
to processing signals from acoustic disturbances.

‘f,

t 2.3 NOISE TESTS OF THE AUTOMATIC DISTURBANCE MONITOR

;i A simple model for transients as a time-domain detection '
entity is to presume the maximum episode is fixed at 50 dB above

i broadband background. It is assumed that the largest transient '

‘. .

he

attenuates 10 dB in excess of the broadband background resonance g
emitted by the source. Assuming that largest episodes are

detected at maximum distance from the source, the power excess 1
of the largest transient impulse is at least 12 dB above the v

-
.-.-

ocean noise background to maintain an acceptably low false alarm X
rate. With these conservative assumptions, detection of maximum 1
episodes in the time domain is equivalent to sensing the reso- -
nant background source at -28 dB (50 dB-10 dB-12 dB) relative to y

27l

ocean noise.

o
L
v This idea was tested by adding gaussian noise to NICRAD .
oy test data with a result of -24 dB for a 50-dB episode. With a .
. correction of 10 dB for absorption, -14 dB was obtained. This §
i experiment's result deviated from the ideal of -28 dB expected. N
To acceptably control the false alarm rate in the experiment, a )
i; higher threshold of 14 dB was required. This accounts for 2.5
- dB of the 14 dB discrepancy in detection. The use of a second :
{: difference operator applied to the data combined with nonlinear ;
R
E
2-2 )
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magnitude scaling of the transient episodes accounts for the
rest.

Small episodes were always observed to have longer band-
width than larger episodes, which were lower frequency and had
much narrower bandwidth. The filter response of the ADM, which
detected the second difference of transient data peaks, peaked
at 6000 Hz and the response was down to -12.5 dB at the dominant
900 Hz frequency of the largest episode. Given this explana-
tion, the results are consistent to within 1 dB of the above
expectation. These results indicate no serious problem in
designing a feasible detector of largest transient episodes. By
removing the second difference operator, our experiment would
have detected the source by instantaneous power emission at
about -28 dB as expected.

2.4 THE ASYNCHRONOUS CLASSIFIER INTERFACE (ACI): A NEW ROLE
FOR ADM

The filter of the ADM required a more appropriate design
to optimize capture of largest episodes. In part, this problem
was solved by designing the asynchonous sensor model tested on
the Cray computer simply by eliminating the second difference
prefiltering of input data, and by abandoning the concept of an
energy detector. In abandoning energy threshold as a detection
criteria, and substituting feature replication, we have the
potential of increasing detection capability by as much as the
14 dB threshold requirement.

The ACI replaces energy detection by an asynchronous
feature sensor. This sensor represents transients by a hierarchy
of patterns. A syntactic representation of complex physical
signals is well founded in psychophysics by Howard and Silverman

2-3
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(ref. 5), Howard and Ballas (ref. 6, 7), Howard (ref. 8) and
Howard and O'Hare (ref. 9). The functions of feature sensors
are to learn to form graphical and other possibly diagnostic
pattern representations, to recognize known patterns in real
time, and to recognize targeted patterns or pattern syntax which
will point to files supporting sonar operator classification
decisions. The ACI operating as a preprocessor aids classifica-
tion by enhancing human perception and memory.

Analysis of ACI focused our research on ADM as an asyn-
chronous pattern sensor in a man-machine interface workstation.
ACI is an ADM model which provides automatic preprocessing back-
ground support of primarily interactive classification tasks.
The automatic side of the interface is shown in Figure 2-1,
taken from our Phase 1 ONR SBIR proposal. The overall architec-
ture of the classifier interface is shown in Figure 2-2 from the
same proposal. Our present theory of a classifier interface
adheres to the proposed architecture, but the automatic back-
ground processing is slightly different.

In the revised approach, signal identification and dis-
criminant encoding is hierarchical. At the highest level, a
label is assigned to describe a transient entity, i.e., leading
edge of a long wave train, or singular discrete impulse, etc.
Next, the entity is described by a number of different features,
such as wave shape, average frequency, frequency shift, band-
width, modality, and other measurable characteristics. A certain
type of entity is identified by replication of its encoded fea-
ture values. The dynamic pattern, formed by sequences of entity-
features, defines the syntax of the complex transient distur-
bances of strings for feature attributes. A methodology of bit
mapping syntactic data was described by Holland (ref. 10, 11)
and others. The bit mapped state-variable input are "messages."

2-4
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u The Holland Classifier searches memory for a match between a new
message and a stack of sorted patterns discerned from replica-

3} tion of old messages. Noisy messages with bit errors and weak

- messages with missing bits can be classified by fuzzy matches in

& a dictionary of sorted keys or by high covariances with a matrix

y of Holland Classifier Masks. A more recent approach to this

s bit-mapped classification approach is described by Frey (ref.

S 12). Holland Classifiers have been applied as knowledge models;

. for example, in predicting international events by Schrodt (ref.

';: 13).

P Our treatment of the problem of self-learning departs from
the original model proposed for Phase 1. The former is shown in

g Figure 2-1 with untargeted messages referenced to a singular

- file. In the new model, features of singular signals are stored

Wt on large stacks in real-time program memory and are correlated

i with new messages in search of repetitions of feature patterns.

. Eventually, statistical descriptors of singularly uncorrelated

;k signals are popped and pushed into a lower tier stack in search

of longer time scale correlations. Replicated episodic signals
with common features are set up as a temporary mask. The

I

temporary mask's purpose is to initialize a new neural network

-z connection by switching similar messages into the synapse until

- either a classification mask is formed or the connection is cut.

',

he 2.5 THE AUTOMATIC PROCESSING SIDE OF THE ACI

r

3 Encoding messages and recognizing known patterns has been
discussed. Now the problem of transforming noisy messages and

EE broken or partially defined patterns to known classification
masks--automatic recall--must be considered. 1In addition to

3 automatic recall; algorithms for self-learning of repeated pat-

: terns must he considered.

‘
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Neural network synapse models are used for two purposes:
for induction or restoration of sufficiently well defined par-
tial patterns, or to validate identification of noisy messages.
A comprehensive description of neural network processing is
given by Jorgensen and Matheus (ref. 14). Their neural network
model of a synapse is the modification of a concept attributed
to Hebb (ref. 15). It is remarkably analogous to a Dimus beam-
former: a beamed array of correlated binary state-variable
patterns of variable and unknown dimension.

A possible relation between pattern correlation and neural
path activation is described by Kohonen (ref. 16). Rules cited
by Rumelhart and Zipser (ref. 17) show ways of forming new con-
nections and breaking off old connections as a basis for self-
learning of new patterns. The progress we will report in our
asynchronous sensor research on the Cray is limited to discrimi-
nant measurements and feature extraction algorithms. The
building of a feature hierarchy and self-learning synapse models
will be the goal of future research.

2.6 INTERFACE REQUIREMENTS OF ONLINE AUTOMATIC AND INTERACTIVE
PROCESSING

The function of the classifier interface is to help a
human operator make more accurate and faster classification of
targeted sources. Tasks, associated with classification deci-
sions, are partitioned between a hackground of automatic pro-
cessing (shown in Figure 2-3) and a foreground of interactive :
processing (shown in Figure 2-4). The partitioning depends on
the purpose of the classification. Two primary purposes exist:
excitative classification of patterns possibly related to high
priority targeted sources; and inhibitive classification of
objects neither targeted for classification nor operationally

2-8
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significant, but which may interfere and degrade classification
performance. Excitative classifications are totally under
interactive control by the operator. In that case, the function
of the automatic background is to generate list-directed pointers
to graphical or auditory data files. This is done unobtrusively.
A directory is invoked by the operator and scanned for keystroke
paths leading to the picture or auditory files required to sup-
port an excitative classification decision.

Graphical displays of noise-free representations of possi-
ble pattern classifications, under guidance of a classifier mask
directory, serve to reinforce operator decisions, i.e., see if
the stimulus category was targeted or inhibited; see if stimulus
is similar to the "noisy'" message to be classified.

In the absence of a perceived required action by the
operator, the automatic background processor may invoke an alarm
procedure. In that case, the automatic side of the interface
prompts the operator for a decision on a stack of transient
records it is prepared to display upon the operator's command.
For that, the operator could hit a key signifying an authorized
presence. After making a classification, the operator optionally
could observe a directory list of alternative classifications
and generate a report on the classification of any new messages
by filtering a pattern catalog to obtain matches. At this level,
filtering could optionally involve rearranging columns of attri-
butes by list command, or sorting, scoping, and finding records
meeting any prior or newly specified relational requirements.

On command, the interactive environment displays a list of fil-
tered features supporting the operator's and other alternative
classifications consistent with the current message directory.
To the extent that time permits, the final decision is supported

not only by feature attributes but by inspecting a hierarchyv of

2-11
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classifier masks designed as shortest information paths to
targeted sources, and their corresponding pointers to relevant

picture or auditory files.

The inhibitive function of classification is important
because most transients are irrelevant to operating require-
ments. They make demands on the attention of an operator, with-
out any value added. These are always present due to abundant
own-ship transients, highly structured sources of complex scunds
in the local environment, and innumerable random transients
indicative of highly complex sources or perturbations of the
medium. Suppression of self-noise and other inhibitive signals,
which are known to interfere with and degrade the operational
response to true excitational stimulus, is performed automatic-
ally. The purpose is to suppress these positively identified
interfering transient episodes which are known to lengthen reac-
tion times and cause serious classification errors. The operator
has a supervisory option of examining the current working direc-
tory list of inhibitory messages; displaying the messages with
their corresponding mask; in doubtful cases examining picture
and auditory files; and if desired, deleting the message from a
working directory of the automatic background processor.

2.7 TRANSIENT EVALUATION ENVIRONMENT

Reference to specific operator actions in the above dis-
cussion is entirely notional and not indicative of an operable
MMI design. Fundamental to the development of both algorithms
and MMI is our concept of a transient evaluation environment.
The transient evaluation environment is the integration of hard-
ware, software, and actual data into a basic research develop-
ment and test tool using psychophysical methods and measures of
man-machine performance. Formal psychophysical experimentation
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and analysis provides both the valid measurement of performance
and an understanding of underlying human perceptual and cogni-
tive processes relevant to design of classifier systems.
Already our classification algorithm research has derived sig-
nificant benefits from applying human models to automatic pro-
cessing. Making the machine more man-like can both improve
machine performance and provide a common ground to improve
operator understanding of background processing capabilities,
strengths, and weaknesses.

A parallel, and equally important role for the transient
evaluation environment is in the area of transient data analysis
and data base development. The identification of invariants in
each acoustic transient signal-type across operational param-
eters such as environment, source constraints, such as limits of
operating speed and depth, must be empirically driven as well as
based on theoretical grounds. A facility is envisioned; sup-
ported by environmental models and data. A functional partition
of a transient evaluation environment is illustrated in Figure
2-5. A modular architecture is proposed to facilitate rapid
software development and update using "plug in" components.

This approach will also translate into tactical software design
consistent with rapid tactical updates,

2
e The transient evaluation environment is also capable of support-
< . . . .
N4 ing transient classifier systems beyond the basic research
“ stage. At this point specific program and system constraints
?y are added and the environment becomes a rapid prototyping facil-
ity. Rapid feedback of operator performance is critical in
:j order to cost-effectively determine whether an innovative algo-
h )
’ rithm or MMI concept helps or hinders typical operator perfor-
W] mance. For example, a proposed design concept is tested by
: operators using known transient signals added to representative
v
",
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noise under a range of propagation conditions. The test results
are appended to a psychophysical experiment data base. By spe-
cifying relational experimental conditions, i.e., propagation
range and noise state; relevant receiver operating characteris-
tic (ROC) curves, reaction times, and learning curves can be
derived. Test data are selected from a standard pool of typical
transient episodes. This includes frequent "noisy" random
transients expected in the local environment and structured
transients from diverse sources, i.e., biologics, ice, and own-
ship sources.

To be practical, these benchmarks must be extrapolated
from standard tests to other operational situations. This
requires validation of predicted performance and variances by
psychophysical models. Finally, the transient evaluation envi-
ronment is critical to life-cycle maintenance, including algo-
rithm/MMI upgrades and data-base update. Psychophysics is
needed, not to design experiments to resolve cognitive models,
but to perform cognitive interpretation of performance based on
the large data base of an ongoing experiment. This is expected
to lower the cost and accelerate the rate at which problems are
resolved by psychophysics.
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3.0 PILOT PSYCHOPHYSICAL EXPERIMENT

This section describes the objectives, procedures, and
results of Presearch's pilot psychophysical experiment. The
experiment was a joint effort between Catholic University's
Human Performance Laboratory (HPL) and Presearch. HPL provided
the facilities, including signal processing, displays, experi-
mental control, and data gathering. Experimental design and
results analysis were joint undertakings.

The purpose of conducting a psychophysical experiment
under our transient classifier systems and MMI research was to
establish the feasibility of our proposed transient evaluation
environment concept (Section 2.7). The specific objectives of
the pilot experiment were threefold: (1) assess the impact of
SNR on transient classification, (2) establish performance
benchmarks for discrimination against noise (detection), and
(3) compare performance between known and novel transient
signals. At the beginning of our research, we expected the
experiment to raise more questions about the underlying human
perceptual and cognitive processes than it would answer. The
immediate goal was to direct the research towards areas most
relevant to operational situations. The experiment was inten-
tionally structured to promote further inquiry.

3.1 BACKGROUND

The experimental procedure emulated a multisensor-stream
scenario typical of a multiple-buoy or multibeam configuration.
The scenario assumed the existence of an automatic transient
detector ("bell ringer") that monitored all sensor streams,
detected possible transients, windowed and processed the raw
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data, and passed the data to the operator for classification. A
monochrome spectrogram or Fastgram (a time verus frequency B-
Scan) was selected as the display mode. The operator classified
the data in one of three ways: (1) as one of a set of known
transients, (2) as a new or unknown transient, or (3) as noise
alone (i.e., a false alarm for the "bell ringer"). The operator
then proceeded to the next candidate. Although this operating
concept is oversimplified, it represents several fundamental
operator tasks that are required in an interactive classifica-
tion systenm.

The multisensor-stream scenario had reduced semantic or
contextual information in that each potential transient snapshot
relayed to the operator was independent, i.e., from a different
beam or buoy. Thus transient type (target type) and SNR (range)
were randomized in successive snapshots (experimental trials).
The impact of semantic information from correlated spatial
observations, and prior knowledge derived from intelligence
and/or other sensors in both the multisensor-stream (search mode)
and single-sensor stream (tracking mode), will be a future
research effort.

The experiment dealt entirely with actions of the operator
related to the transients presented by the assumed "bell ringer."
No attempt was made at this stage of the research to integrate a
real-time automatic, transient detector into the experimental
paradigm. Instead, the transient snapshots were selected
beforehand from a digital tape of real data. Gaussian noise was
added to the time domain data and each signal was scaled to four
different SNRs to emulate propagation loss at various ranges.
The use of Navy standard environmental models such as RAYMODE or
FACT, and more complex noise models such as Magnum-Moll were
deferred to later research. Noise alone cases constitued 25% of
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the experimental trials, representing a fairly poor '"bell
ringer.” This result is probably not consistent with opera-
tional requirements concerning operator workload; however it was
required for experimental purposes to collect sufficient data to
establish operator false alarm rates.

Experimental design in which transient and procedural
parameters are selected and controlled by the researcher repre-
sents a necessary non-operational constraint that must be
consciously managed to optimize the acquisition and transfer
of practical knowledge. Experiments provide variable degrees
of freedom and/or direct operational parallels depending on the
issues to be addressed. In the design of this experiment, two
important departures from psychophysical protocols were made in
order to emulate the operational situation. First, noise was
added to the time domain data rather than to image space, i.e.,
directly to the processed display. This step was critical
because overlapping Fourier transforms used for Fastgrams
would result in noise that was correlated from line to line in
the image. Noise added in image space is unrealistic because
it is uncorrelated from time to time. To examine transient-
classification performance in the presence of noise that is
present at the transducer (ambient and self noise), it is neces-
sary to emulate an operational situation and process the noise
along with the signal.

The second departure involved scaling the display such
that the noise level remained constant regardless of signal SNR,
rather than keeping the signal level constant and scaling the
noise. The vast majority (if not all) acoustic displays employ
the constant noise level approach for sound psychophysical
reasons. These reasons include:
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n (1) maximum use of dynamic range across all noise conditions;
(2) consistency in time and across environment; and (3) exploi-

;'S tation of natural biological contour detectors, i.e., neural
pathways tuned to spatial and temporal first and second deriva- X
tives of energy. Also, operator knowledge of the instantaneous

« noise condition is secondary to detection/classification of {
N targets themselves. In the current experimental paradigm, scal-
e ing the noise instead of the signal would have resulted in a
- direct cue for target range, i.e., SNR, not available in actual '
2 practice. For example, the long-range, low-SNR cases would have ,
generated significantly brighter, average space-luminance on the !
;; display if the noise had been scaled up. With the signal scaled
to the appropriate SNR, only the signal itself and not the back-
%: ground provided any clues as to target range.

3.2 EXPERIMENT 1

3.2.1 Data Acquisition Preparation

..-;.;..

The data consisted of unclassified transient acoustic
events stored on three standard magnetic tapes in VAX backup
format. The tape files were restored to disk and converted from

r

~” sequential access to direct access. This resulted in three data

5 files totalling 3516, 4096-point records or over 14 million data

" samples.

.

. These data samples were compressed by averaging each adja-

‘ﬂ cent three points. This resulted in an effective reduction of \

the sampling rate from the original 25 kHz rate to an 8.3 kH:z
rate. Reduction was done to facilitate data handling since the
highest transient frequency expected in the data was 4 kH:z.

<@ (Analyses revealed little information at frequencies even close
to this rate.)
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3.2.2 Signal Processing

A simple peak detecting algorithm was developed to ini-
tially locate candidate transient events in the data. The algo-
rithm was based on a statistical model which was used to predict
the value of successive peaks from a moving window of immediately
preceding peaks. A peak was defined strictly as the mid-point
maximum of three successive points, s(n-1), s(n), and s(n+1)
having the relationship (s(n-1) < s(n) and s(n+l1) < s(n)) or
(s(n-1) > s(n) and s(n+1) > s(n)). First and second order predic-
tion and_.prediction error statistics were then computed. These
were used to predict the intensity of the next peak. A transient
event was defined as any peak with an absolute SNR value exceed-
ing the mean of the predictor sample by more than eight standard
deviations. Once a transient was located, 8,192 samples (0.98
sec) were extracted for each target.

The peak detector technique identified a "working sample”
of approximately 45 of the largest transient events which were
then inspected visually using an interactive time-domain editor.
A testing set of_six transient targets was selected for the
experiment trials. A second set of six "null" or background
signals was also extracted from the data, one to match each of
the six targets. This was accomplished by sampling from records
which were temporally contiguous to the target records. Hence,
background noise plus steady-state signatures were comparable

across the target and null sets.

An 8,192-point FFT was performed on each of the target
samples. Inspection of these data revealed harmonically-related
spectral bhands as a distinguishing feature of these transient

events.
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3

n A spectrogram wa: constructed for each of the target
samples by computing 256, 256-point FFTs on adjacent samples

E (approximately 31 ms) of the data, advancing successive FFTs by
31 samples (approximately 3.7 ms). The log of the spectral mag-

3 nitudes from this analysis was used to construct 256 x 256 pixel

images which depicted the time-varying frequency composition of
each signal. Visual inspection of these data revealed clear

L%

harmonic patterns, frequency glides, and broadband characteris-
tics for each of the transient events.

<
e
The actual test imagery was constructed by adding Gaussian
;;:‘ noise with zero mean and unit standard deviation to the signals
in the time domain before carrying out the spectrographic analy-
3- sis. Signal-to-noise ratio was varied by scaling the signals to
¢

yield ratios of 20, 14, 8, 2 and -4 dB between the peak of the
signal and the Gaussian noise. The 20 dB case was used in the
preview segments of the experiment and the remaining four SNR

e [}

cases were used in the test trials. The images were all scaled

L

to have approximately equal space-average luminance on a mono-
chrome -video monitor.

-~ ¥

P

Image preparation, control of the experimental events, and

j% data analyses were carried out on a general-purpose laboratory
- computer (Digital Equipment Corporation VAX 11/750). The com-
5 puter served as the controlling host for a Gould Imaging and

i Graphics IP8400 image processing system which was used for on-

B line image processing, storage, and presentation. Participants
i: were seated in a soundproof testing room, with low-level ambient

light, imagery was viewed on a high-resolution, 14-in. (30.5-cm)
diagonal, monochrome monitor (Ikegami Model PM14-3H). Standard
raster frequencies and an interlaced 30 Hz frame rate were used

Ly

w with a display resolution of 512 by 512 8-bit pixels. Partici-
: pants sat at a viewing distance of 122 cm and entered responses
N on a computer terminal keypad.

~
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2
u Sixteen paid undergraduate volunteers served as the
. observers in each of two experiments. The participants were
R} told that the $10.00 flat fee could be augmented by a potential
- $4.00 bonus for good performance. All participants received the
!\ maximum $14.00 for participating in the experiment regardless of
- performance.
EI 3.2.3 Procedure
;f During a preview stage, the participants were shown three
signals. Below each signal a letter was displayed. The letters
%: A, B, and C were used to designate the three signals the
observers were shown. The observers were instructed to study
Ny and remember each signal and associate the signal with the
- letter that appeared beneath it. Following the signals, three
" noise fields were displayed for the observers to familiarize
' themselves with nonsignal trials. This process was then

repeated a second time. The preview session also served to
5; familiarize the students with the actual response procedures
| used during the test blocks. The instructions for the proper
’; keypad responses were presented on a video monitor which was
-~ located to the left of the observers.

The experiment consisted of six blocks of 96 self-paced

:Q trials, administered in two sessions of three blocks each. Each
7a session occurred on a different day. Before each block of trials
. for each test session, the preview stage was repeated. In each
f‘ - . - .

- block, six signals, three that were shown in the preview, and
three novel signals, were shown. Each signal was presented
three times in each of the four signal-to-noise ratios. There
were 24 nonsignal trials in each block. Signal type, SNR, and

. nonsignal trials were presented in random order for each block.

4

“w

=

. 3-7

..

T A R T P S R S R



-

NS

P

PAFR

‘.’ -

N D)

Vs

"I

LN
-

o AR

v

iy
-

P2

»

L2l

4

‘.l

&

o T TS e o Ae et Ea% et D aar gaC fad fat et o pae ot yot Bt ga' fad fat @t flat v gor b G gat hat gad iat Ga® B2’ O
R e - WL W W W WY \J < ba ot Bac ¥’ gbe

~ g -
LA Rl AP O AL N A M R AN 8 -

PRESEARCH INCORPORATED

During each trial the observers' task was to classify the
spectrogram as either noise alone, as a specific "known" signal
(A, B, or C) or as a new or "unknown'" signal. This first phase
of responses was to classify between noise alone and any signal
condition. Their response choices were "1" for definitely no
signal present, "2" for probably no signal present, "3" for
probably a signal present, and "4" for definitely a signal
present. If the observers chose response "3" or "4," they were
then asked to identify the signal by pressing one of four con-
tiguous keys: "A" for signal A, "B" for signal B, "C" for
signal C, or "0" ("other") if there was a signal present but it
was not one of the three signals shown in the preview. After
making a response, feedback appeared on the display. If, in
truth, the trial consisted of a known target signal A, B, or C;
then the appropriate letter (A, B, or C) was displayed on the
monitor. 1If, in truth, the trial consisted of a novel target
signal or non-signal (no target present) then the character "?"
appeared on the monitor. When ready to go on to the next trial
the participants pressed the key labelled "continue." Upon com-
pleting the sixth block of trials, observers were asked to com-
plete a short questionnaire regarding the experiment. The
experimental briefing and questionnaire given to each student is
given in Attachment A (Section 3.5).

The sixteen participants were broken into four groups of
four based on which three transients were in the "known'" group
(i.e., those which are presented during the preview sessions and
have explicit feedback during testing). The grouping was
selected in order to separate transients 1, 2, 3, and 5 that are
dominated by harmonic components from transients 4 and 6 which
are not. The grouping was also used to test interaction between
two very similar transient events (1 and 2) both of which con-
sisted of three distinct episodes and were positionally located

3-8

',\‘.‘-!.‘-' B S B f_'f':q" A AN '{,‘:’F,:.‘.'-I’;.'N'f‘;,";.ﬁ...-'f. e a0 T,
= - » B ki ol R " » . X "

PV % §

ML AS SLAE SRR LN
g WS o o o »



-

ol

s"\"'\(

E R §
2°2"

LA

’l...l.{l.

J‘ f-u' N .-

‘- 2y

Lt L’A—"JA..&*.L{L SCL NG,

TV RE"E™ ERETN

PRESEARCH INCORPORATED

at the bottom of the spectogram display. The resulting group-

ings were:

Group Transients in Preview Feedback Set

1 1, 2, 6
2 3, 4, 5
3 1, 4, 6
4 2, 3, 5

The traansients in the "preview/feedback set" will be referred to
as the "known'" transients for each subject in the remainder of
the report. The novel transients will be referred to as
"unknown.'" The preview set grouping ensured that each transient
type was used in the same number of known and unknown trials
combined across subjects.

3.2.4 Results and Discussion

3.2.4.1 Detection Results

The four-point confidence scale used by the participants
to discriminate the presence of a transient against the noise
alone, was used to derive the Receiver Operator Characteristic
(ROC) curve for each subject and collapsed across subjects for
each SNR. The area under this curve was then calculated using a
trapezoidal algorithm. This performance measure was chosen to
avoid an unnecessary Gaussian assumption. The results by block
are illustrated in Figure 3-1. The ROC area indicated that the
performance on the detection task quickly reached asymptote and
that the impact of SNR was substantial. Figure 3-2 illustrates
that performance for the unknown transient group is only slightly
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worse than for the known transient group. A mixed design analy-
sis of variance substantiated the significance of SNR (F (3,45)
= 57.53, p < .01) and the known vs. unknown group difference (F
(1,15) = 6.92, p < .05) with no interaction (F (3,45) < 1.0).

The performance difference between the known and unknown
signals is shown by block in Figure 3-3. The percentage of sub-
ject responses to either response key 3 (probably signal present)
or 4 (definitely signal present) is used as a performance measure
to illustrate that the learning exhibited at the two high SNRs
for the unknown group is twofold: increased number of hits, and
fewer false alarms. Performance at the two high SNR cases over
the later blocks indicate that subjects did indeed recognize the
unknown transients as valid target signals. It is most likely
that the lack of feedback, particularly at the difficult lower
SNR cases, was the reason for the reduced performance compared
to the known transients. This is supported by the large differ-
ence between performance on known vs. unknown for the two low
SNR cases.

At the lowest SNR the significance of ROC area over chance
performance can be ohbtained by determining the variance of the
chance ROC curve. For equally likely responses across the four
point scale, each of the responses is marginally distributed as
binomial with p = .25 from a multinomial distribution. The
number of subject trials at a given SNR level for a single block
by group (known or unknown) is 144, resulting in a ROC area
requirement of .5402 for significance at the .05 level (using
the normal approximation). For the SNR = -4 dB case, detection
performance for known transients was significantly above chance
for blocks 2, 3, 5, and 6 (recall that block 4 was the beginning
of the second day). For unknown transients detection perfor-

mance was significantly above chance only for block 6. The
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¥
‘ implication is that the feedback condition provided transient
specific low SNR training, possibly resulting in unique low SNR
:3 strategies. Some transfer to the unknown transients is evident
v by the above chance performance at +2 dB SNR and by the slight
’ learning trend at -4 dB SNR. It is unlikely that the preview
. experience was a critical differential factor because the high
o SNR trials for the unknowns served a familiarization (observa-
2 tion) function similar to the preview trials for the knowns.
4y
= Transient specific composition (syntax) is shown to be a
| significant factor in the disparity between detection perfor-
?C mance on known and unknown transients by the nonparametric SIGN
test broken out by preview set in Table 3-1. Although the sig-
- nificance level for the hypothesis that performance is better on
- known transients for all trials is .0143, it is readily apparent
that strong differences in the previous sets exist. Only two of
I' the four preview sets were significant, although a third demon-
. strated a similar trend (preview set 1, 2, 6 ; p = .1938).
:; Transients 3 and 5 were common known signals for the two preview
) sets that did show significant performance enhancement for the
!_ known condition, and were common unknown signals in the two
e remaining preview sets. Transients 1 and 6 were common in the
" opposite fashion. The subjects in preview set 3 (known transi-
K ents = 1, 4, 6) performed significantly better on unknown
. transients (p = .9979 that known performance is greater than
o unknown performance, translates into p = .0021 that unknown per-
. formance is greater than known since there were no ties). All
X three of the unknown transients had strong harmonic components
in only this preview set. Sufficient data is not available to
és perform meaningful statistics on each individual transient type

by SNR and by known/unknown grouping. At this time it is impos-

sible to draw any stronger conclusion than that the preview/
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feedback condition appears to improve detection performance,
particularly at low SNR, but that transient specific syntax is
an even more powerful indicator of performance.

Table 3-1. Comparison of Detection
Performance on Knowns vs. Unknowns
Preview Set N P
1,2,6 12 8 .1938
3,4,5 16 15 .0003
1,4,6 16 2 .9979
2,3,5 16 14 .0021
Total 60 39 .0143
N = number of subject/SNR sets
X = number of cases with area under ROC curve greater for

"Knowns"

P = significance level for x (sign test table for N 40, normal
approximation for N  40)

3.2.4.2 Detection Performance Benchmark

The "null" or "background only" data samples associated
with each transient were used to determine the SNR between the
background alone and the Gaussian noise added in each of the
four specific transient peak-to-noise SNR cases examined. This
information was used to determine the performance required by
the best current broadband sensor to match the experimentally
derived transient detection performance. The results of the
transient experiment were translated into a false alarm proba-
bility per watch equivalent to current broadband sensors, and
used a probability of detection of .5 to ensure accurate com-
parison. The transient "bell ringer'" assumed in the experiment
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procedure was taken to '"autodetect" one possible transient event
for operator confirmation/denial every 670 seconds when trained
on noise alone (i.e., it was a bell ringer resulting in over 250
operator decisions per hour for full azimuthal coverage).

The detection performance realized in block 6 of the
experiment for known transients and collapsed over subjects was
1 dB worse than the theoretical best performance for current
broadband sensors. This result is promising considering the
untrained and unscreened subject pool and the nonoptimized man-
machine interface. Two experienced sonar operators were tested
on a single block of trials and demonstrated performance that
was 12 dB better than the subject pool. These results are not
entirely unexpected, given the combination of signal charac-
teristics and display type used. It remains to be seen how the
more complicated transmission loss and ambient noise conditions
in the actual acoustic environment will effect this preliminary
result. The precise performance characteristics of the bell
ringer (or no bell ringer at all) and additional operator work-
load under considerations of concurrent and/or multiplexed task-
ing will also be critical factors determining operational
performance.

3.2.4.3 (Classification Results

Figure 3-4 illustrates the conditional probability of cor-
rect classification by group (known vs. unknown) given detec-
tion. A Spearman statistic test for trend showed that learning
was significant at the .05 level for both knowns and unknowns at
SNR 14, 8, and 2 dB; but not at SNR -4 dB. The most striking
learning was for the unknown group at high SNR as expected from
the detection results. It is interesting that classification
performance at an SNR of 2 dB is grouped with the higher SNRs
for the known transients yet for the unknown transients it is
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grouped with the lowest SNR case. As in the detection analysis,
the feedback condition has shifted the performance curve. The
result in classification is, however, more surprising because
given detection, it is reasonable to predict that feedback that
"crystallizes" the perception of all known signals would comple-
mentarily enhance rejection of all other signals.

Note that chance responses to the four choices will yield
a probability of correct classification by group of .75 for the
knowns and .25 for the unknowns, Note also the responses based
on presentation ratio (perceived by subjects as the a priori
probability) would result in a probability of correct classifi-
cation by group of .50 for both groups. Classification per-
formance of the -4 dB SNR unknowns and noise cases suggest that
classification responses were influenced by the presentation
ratio rather than being pure chance. Noise alone cases that
were false alarms were classified equally into the two groups
(probability of classification of unknown given detection of
noise was .486). Recall also that detection performance for
unknowns was not significantly above chance at -4 dB SNR. An
alternative explanation is that responses were chance but based
upon an internally developed known/unknown dicotomy. This can
be tested with another experiment where the presentation ratio
between known and unknown is other than 1:1, The classification
performance of knowns at -4 dB SNR falls below chance response,
also supporting the argument that classification responses were
not purely chance key presses. Classification performance for
the knowns at -4 dB was better than presentation ratio based
responses supporting the detection performance results that
showed detection performance significantly above chance.
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Figure 3-S5 shows the probability of correct classification
by signal type (i.e., A for A, B for B, C for C) for the known
cases. Chance response is .25 for this measure of classifica-
tion performance, while the presentation ratio based response is
.167. The relationship of classification performance across SNR
remains the same for performance measured by type or by group;
however, it is clear that classification performance by signal
type for knowns at -4 dB SNR is better than responses based upon
chance and/or presentation ratio alone. Classification perfor-
mance is also greater than chance responses between only the
known alternatives given classification within the known group
(.22, .22, .17, .20, .21, .27, respectively for each block]).

The most consistent feature used to classify as indicated by the
subjects in the questionnaire was the transient position on the
time axis. Fourteen of the sixteen subjects used positional
clues in their descriptions of the signals. This clue is con-
sistent with the assumption of a bell ringer automatically iso-
lating and windowing the data, although the consistency of the
window will in fact be sensitive to SNR. Experiment 2 examines
the impact of removing this clue by altering the position in
time of each transient from trial to trial.

The impact of SNR on classification performance given
detection is summarized in Figure 3-6. The drop-off in classi-
fication performance illustrates sensitivity to SNR. 1It also
indicates that detection does not guarantee correct classifi-
cation. This result is consistent with one group of common psy-
chophysical models of classification as the joint combination
of several independent discrimination judgments. 1In the current
experiment, the independent discrimination judgments would be
differentially sensitive to SNR resulting in classification that
demonstrated associated performance variation with SNR. Each
transient type exhibits its own unique relationships between
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!! discrimination parameters and SNR as evidenced by the different
shapes of the classification performance curve. Other approaches

:: to explaining the relationship between detection and classifica-
: tion have not beeen addressed in this study. An intriguing, but
!‘1 at this time inconclusive observation is that classification is
- more difficult than detection at high SNR, but relatively easier
e than detection (compared to chance) at low SNR.
»
N 3.2.4.4 Response Latency Analysis

. Figure 3-7 shows the mean latency for correct detection
Eﬁ responses (i.e., probably or definitely signal present) and cor-

rect noise responses (i.e., probably or definitely no signal
present) collapsed across subjects. Analysis of variance was
performed by filling the few holes in the individual subject
data (for example no detections at -4 dB SNR in block 2 for sub-
i' ject 12) with the average latency for that condition across
subjects. Results indicated that SNR was significant at the .01

. TS
N,

level (F (3, 45) = 30.86). The responses cluster into two groups
by SNR, suggesting the possibility of two different perceptual/

»

cognitive detection processes; one at high SNR and another at

*
o

low SNR. Subjects supported this hypothesis by describing detec-

:: tion responses at high SNR as "almost automatic or reflexive’
- followed by a classification judgment and the classification
< response. On the other hand, at low SNR, the detection decision
N appeared to the subjects as intimately linked to the ability to

correlate the perceived pattern with one of the remembered target
signal patterns (including any unknowns already identified by
their repetitive presentation at high SNR). This hypothesis

3. predicts that the classification latency associated with the low
SNR cases will be relatively shorter than for the high SNR cases
> because the classification decision has already been reached.

.0
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To check this prediction, classification latency was
examined as a function of SNR. The mean latency between the
detection response and the classification response is shown
collapsed over subjects in Figure 3-8. Interpretation of the
classification latency results is difficult because on any given
trial a subject need not make the physical detection response
prior to making a classification decision (i.e., he could make
the detection decision and the classification decision inter-
nally prior to making any physical response). The classifi-
cation latency in these cases is primarily represented by the
time needed to find the appropriate key corresponding to the
desired classification label. (It is assumed the operators
would not arbitrarily adopt a strategy to minimize the classifi-
cation latency by first locating the appropriate detection and
classification keys and then preparing to hit them rapidly in
sequence.) Note that this type of response is exactly what was
expected for the low SNR cases if hypothesis of mutual detection
and classification decision-making at low SNR is valid.

Figure 3-8 demonstrates an increasing trend in classifi-
cation latency as SNR drops from 14 dB to 2 dB with a reversal
at the lowest SNR case. The difference in latency with SNR was
significant (F (3, 4763) = 5.18, p < .005) based on an analysis
of variance. An additional pairwise comparison of the means
(using the normal approximation due to the large number of
samples) indicates three possible groupings of latency shown in
Table 3-2. An optimal grouping analysis (including the best
number of groups) is not practical for the current experimental
paradigm. 1It is however significant to note that the reversed
trend is significant (the -4 dB SNR classification latency is
significantly lower than the 2 dB SNR case) which lends support
to the hypothesis of combined detection and classification
decision-making at the lowest SNR. Classification latency for
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the noise trials was not significantly different than the -4 dB
Additional
parameters in the hypothesis are required to explain why the 2
dB SNR case is the only case demonstrating significantly dif-

SNR trials, which also supports this hypothesis.

ferent response latency than the -4 dB case.

made of what those parameters might be at this time.

Table 3-2.

No speculation is

Significant Grouping of Classification Latency

STIMULUS CONDITION
(ORDERED IN ASCENDING CLASSIFICATION LATENCY)
14db -4db 8db NOISE 2db
GROUPS NOT
SIGNIFICANTLY DIFFERENT
R
.|
L]

The classification latency results also indicate that

classification response latency nearly reached asymtote by block

2 and the maximum absolute difference between SNR cases is less

than 0.5 seconds.

These differences in classification times are

not great enough to alter the monotonically increasing latency
the total time to detect
and classify remains monotonically increasing with decreasing

of detection with decreasing SNR,

SNR.

P G, AL v 6 ST
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Figure 3-9 reveals additional clues toward understanding
the decision-making process used by the subjects by examing both
hits and misses for signal and noise stimuli. A pairwise com-
parison of the means resulted in significant differences (at the
.05 level) between the groups indicated in the figure. At the
two high SNRs, correct and incorrect responses had identical
latency and this latency was significantly faster than any
responses to the noise trials. This result when comhined with
the high ROC area found in section 3.2.4.1 suggests that misses
at high SNR may have often been incorrect physical key strokes
rather than incorrect detection decisions. 1In other words, a
very short response latency is an indication of the presence of
a signal regardless of the response (signal or noise) actually
entered. This has potentially direct application to MMI design,
by suggesting that an automatic check of response latency could
be used to direct the operator to doublecheck rapid signal
absent responses for keystroke error.

Examination of the detection latency for noise and -4 dB
SNR stimuli indicates a significant response biased latency.
For these trials, it is only the response, and not the stimulus,
that is correlated to latency. Responses indicating a signal
was present (signal hits and false alarms) took longer than
responses that a signal was absent (signal misses and noise
hits). The low SNR stimulus case can be treated the same as a
noise trial for this analysis because of the low detection per-
formance for this case (ROC area = .529). This simplifies the
question: Why should a false alarm take longer than a correct
noise determination when the stimulus is the same. Two possible
explanations are postulated: (1) additional mental processing
pertaining to classification is done after the detection deci-
sion and before the detection response, and/or (2) One or more
consistent perceptual features occurred in the noise trials that
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X

were called as false alarms and these features did not occur in
the noise trials correctly identified (i.e., the stimuli as per-
ceived by the subject were not the same). An analysis across
blocks illustrated in Figure 3-10 indicates that the response
based latency phenomenon only occurs during the learning phase.

LAUN

The effect of the known and unknown group on detection
ﬁ latency is illustrated in Figure 3-11. An mixed design of vari-
ance indicated some significance between knowns and unknowns (F

(1, 15) = 3.21, 05 < P < .10) and no interaction with SNR (F (3,
45) = 1.0). The difference between the known and unknown group

:: was predominantly at low SNR. Classification latency between

- groups was nearly identical. A possible explanation for the

e crossover observed in Figure 3-11 is that once sufficient learn-

= ing takes place, the subjects developed a heirarchical classifi-

.. cation structure using a known vs. unknown decision preceding

f: the classification by type required for the known signals. The

. grouping of all unknowns into a common response set then elimi-

ﬁ: nates the time spent remembering additional, finer level classi-
fication rules required for the known group.
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! 3.3 EXPERIMENT 2

&: 3.3.1 Overview

g Experiment 2 was conducted to test the performance of the
. participants for transients having no position clues on the

~, vertical axis. The variable positioning of transient signals

:j along the vertically oriented time line was devised so as not to
- allow the participants to make position related detection and

> classification decisions. Below is a comparative study between
‘ the results of Experiment 2 and those already mentioned of

fﬁ Experiment 1. Conclusions concerning Experiment 1 which are not
‘ further discussed in this section should be assumed to be

E} consistent with Experiment 2.

- 3.3.2 Results and Discussion

3.3.2.1 Detection Results

Detection performance in Experiment 2 was nearly identical
to Experiment 1, with Experiment 2 having a slight reduction in
detection performance overall (Figure 3-12). ROC areas did not

.. increase with each successive block for all SNRs; in fact, only
= -4 dB signals show conclusive learning. 1In contrast, the high
- SNRs have decreased ROC areas over successive blocks during each
~ day. This phenomenon is not completely understood; however,

there are two ways an ROC area can decrease:
-
AS
2

(1) False Alarms. An increase in false alarms is

i; expected with an increasingly aggressive strategy to
s correctly detect signals.
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(2) Signal Misses. The increase of signal misses for
high SNRs is a difficult concept to explain. For low
SNRs, this increase can be attributed to an increas-
ingly conservative strategy. However, for high SNRs,
signals are difficult to miss, unless, because of the
length of the experiment, the participant has become
increasingly distracted and has consequently lost
concentration.

Unfortunately, it is difficult to conclude whether one or
both are occurring. Also, -4 db signals have ROC areas which
fall below the random threshold of 0.50. ROC areas calculated
for known and unknown signals (Figure 3-13) are nearly identical
to those of Experiment 1, known signals having consistently
greater ROC areas.

The percentage of detection for signal present responses
for known and unknown signals (Figure 3-14) was also nearly
identical to data collected from Experiment 1. A few exceptions
existed: for unknown signals at -4 dB analyzed over blocks, the
percentage of signal present responses was at times lower than
that of noise. This indicates that statistically speaking, the
participant was unable to differentiate between the two. Also,
the percent of signal present responses for noise is consistent
throughout all blocks, whereas in Experiment 1, the percent
decreases over successive blocks. The implications are that
participants in Experiment 2 did not learn from their previous
mistakes (false alarms). In fact, during both Experiment 1 and
Experiment 2 there is no feedback to the participaht indicating
false alarms; therefore, results in Experiment 1 which show a
decrease of false alarms over successive blocks (learning) was
unanticipated.
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was slightly different in com-

The percentage of correct classifica-

tion for known signals by group analyzed over blocks showed that
the 2 dB signals were grouped with the -4 db signals, as opposed
to being grouped with the high SNRs in Experiment 1 (Figure

3-
tion of the transients
threshold to increase,
increasingly difficult

15). This indicates

to classify.

that for Experiment 2, the unfixed posi-
caused the classification performance
making signals of lower SNR levels

Table 3-3 graphically shows

the detection threshold in relation to specific classification

clues (discriminants) for a green SNR.

Types of clues would

include different light patterns and their associated positions.

Table 3-3.

Classification Performance Threshold

Experiment 1

Experiment 2

Clue
Clue
Clue
Clue

Clue

1

+— Threshold For -4 db Signals
2

+— Threshold For 2 db Signals
3

4

+—Threshold For 14 db Signals
S

Clue 1
<«— Threshold For -4db Signals

'«— Threshold For 2 db Signals
Clue 3

Clue 4
<+—Threshold for 14 db Signals
Clue 5§

those below the thresholds have a less than 50%
might represent the position-related discriminants.
anticipated,

\)ﬁaﬁ"‘-"\"“ﬂ.’.\):'. l.’ -} . ...." _'.._“.;

All clues above each of the thresholds represent clues
that have a greater than 50% chance of being observed, while

for increasing SNR,

Clue 2
Also, as

chance.

more clues are observable.
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For unknown signals, the percentage of correct classifi-
cation by group increased over successive blocks during each
day, indicating learning took place. However, between blocks 3
and 4, a drop in performance for -4 dB signals was found, indi-
cating a loss of memory from the day before. Interestingly
enough, in block 4, the -4 dB signals had classification perfor-
mance less than chance responses. Like Experiment 1, the high
SNRs and low SNRs were grouped separately, with the Experiment 2
classification performance being generally worse than that of
Experiment 1.

Classification performance of known transients by signal
type (Figure 3-16) was identical to that of Experiment 1, with
the exception of the 2 dB signals having slightly worse perform-
ance. This result can also be attributed to the loss of the
positional discriminant.

3.3.2.3 Response Latency Analysis

The latency time for classification was different from
that of Experiment 1. To understand the reasons for this
change, review of the cognitive and perceptual processes that
occur during the experiment is necessary. The steps of detec-
tion and classification can be broken down into six notional
processes:

1. Recognizing Signal. This step is an internal process
which entails discovering clues which indicate a
signal exists on the screen. One example of this
includes finding '"light worms" or unusual light pat-
terns on the screen. For recognizing noise, the pro-

cess entails either not finding any light worms, or
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Figure 3-16. Classification Performance of Known
Transients by Signal Type (Experiment 2)
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seeing a uniform distribution of light on the screen.
This is classical detection.

Deciding Whether Stimuli is Signal or Noise and With
What Certainty. This step is an internal process
which involves making the decision whether the stimuli
is a signal or noise, and determining the degree of
certainty associated with that decision.

Remembering the Detection Labels (1 - 3). This step
is an internal process which involves remembering the
number on the detection scale correlating to the deci-

sion made in (2) above.

Finding the Corresponding Detection Kev. This step is
an external process which involves finding on the kev-
board the proper key that represents the desired
response, and then pushing that kevy.

Classification of a signal can be accomplished in one

of two fundamental wavs:

A. Feature’/Pattern Queued Approach. This step is an
internal process which involves matching stimulus
patterns with transient patterns in one's memor:.
When no patterns in one's memorv matoh the
staimuls, staimulyr s ctassified as 1 new signal.
Fallowing 4 match, the appropriate slassification

Tabhels must he romembhered.

B Labed Oriven Segquentia) Comparasan, Thyw wron oo
M oanteraal o orooess o whiot o anvalves g step hyosree
mat Ny o the Srpmal Wt et ek U e
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signals. An example would be remembering signal A
and trying to correlate it with the stimuli. If
the correlation is unsuccessful, signal B is
remembered and tried for correlation. It is
important to note that when the correlation is
made, the name of the signal is already known. If
the stimuli is a new signal, the stimuli will not
be classified as such until all of the known
signals have been individually tried for correla-

tion.

A clear and typical example of these two types of
classification processes would involve a person,
"Person 1," trying to identify a friend, "Person 2,"
from a distance. Classification process A is typified
by Person 1 recognizing Person 2 but not knowing the
person’s name immediately. In this case, Person 1 has
recognized specific feature characteristics of Person
2 but has not yet identified that person as '"Bob.'"
Classification process B is identified by Person 1
trying to decide which of his friends Person 2 is.

The process by which Person 1 might identify Person 2
1s by thinking of "Charlie" and then deciding whether
there is a correlation between this person and Person
2. If no correlation exists, Person 1 might think of
“John," and again try to make a correlation. This
process wounld continue until "Bob" had been identi-
fired. Note that there is no apparent bhias for either
of the processes occurring in the experiment. In
fact, there is no indication of any one of the pro-

cesses being used exclusively.
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6. Finding the Corresponding Key. This step is an exter-
nal process which involves finding on the keyboard the
proper key that represents the desired response, and
then pushing that key.

If detection and classification were assumed to be inde-
pendent of each other, steps 1 through 4 would always be sepa-
rated from steps 5 and 6. However, the latency results of both
Experiment 1 and Experiment 2 indicate some classification pro-
cessing occurring during the detection phase of the experiment.

The latency of the participant to detect signals and noise
(Figure 3-17) was slightly different from the results in Experi-
ment 1. The differences are twofold. First, between block 3
and 4, the mean detection latency for the low SNRs increased,
indicating a relapse in performance (from day to day) to differ-
entiate quickly between noise and transients. It is noted, how-
ever, that the mean detection time does generally decrease with
successive blocks, with block 6 showing the best results.
Second, the mean detection time for 2 dB signals was consis-
tently less than that of Experiment 1. The implications of this
difference are tied to the above hypothesis concerning the clas-
sification performance threshold. Because the 2 dB signals are
more difficult to classify correctly (Figure 3-15), one would
expect the time spent trying to classify the signals to be
greater (as shown in Figure 3-18), as well as the time spent
trying to detect them. However, Figure 3-17 shows a decrease in
the mean detection latency compared to Experiment 1. The
decrease in the mean detection latency (2 db signals) between
Experiments 1 and 2 indicates that there is a tendency for the
participant to separate the detection from the classification in
Experiment 2, thereby making detection faster and classification
slower. Both Figure 3-17 and Figure 3-18 support this hypothesis.

3-43
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MEAN DETECTION TIME (SEC)

(DAY 1) (DAY 2)

BLOCK NUMBER

Figure 3-17. Comparison of Detection Latency for
Signals and Noise (Experiment 2)
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The other difference in the mean detection latency data is
that noise has greater values in comparison to Experiment 1.
Note also that the mean classification latency of noise (Figure
3-18) dropped from 1.15 seconds in Experiment 1 to 0.85 second
in Experiment 2. These data represent the other side of the
classification latency issue. At some point, detection becomes
so difficult that the participant is reluctant to answer posi-
tively to a detection until a certain amount of classification
processing has taken place. This would imply that parts of step
S (described above) would occur before step 2.

The same hypothesis can be applied to the detection and
classification latencies for -4 dB signals. As is apparent in
Figure 3-17, the -4 dB signals have a significantly greater
latency for detection than the other SNRs. 1[It is important to
note that detection latency should increase with the decrease of
SNR, simply because the signal is more difficult to see. How-
ever, the -4 dB signals have abnormally greater detection laten-
cies, indicating additional internal processing. Likewise,
Figure 3-18 illustrates the mean classification latency for -4
dB signals as being less than expected. Because more classi-
fication processing is occurring during the detection phase of

the experiment, less time is necessary for classification during

the classification phase.
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3.4 GENERAL DISCUSSION

The analysis of Experiment 1 and Experiment 2 has lead to

&

‘ seven significant results:

o’

1. Transient detection and classification performance are

:: highly independent. Both are very sensitive to SNR.
o
A 2. Novices were able to rapidly detect and classify un-
:: known transients, including those with significantly
X novel structure. This implies rapid and accurate
&; internal representation and recognition of pure noise
' backgrounds and/or identification of replicated
features different from the white Gaussian noise back-
ground.
. . 3. The feedback given on known transients resulted in
N better performance at low SNR when compared to perfor-
¢ mance for unknown transients. This was in spite of
repeated observation of the unknown transients at high
; s. SNR, and associated excellent performance.
v
E { 4. Performance varied widely from transient to transient.
S This transient specific structure (syntax) effect was
5 much stronger than the known vs. unknown group effect.
“»
5 S. Novice detection performance against acoustic trian-
N sients in the experiment was comparahle to theoretical

hest operator detection of broadband signatures using

conventional sensors. Txperienced sonar operators

outperformed the novices by 12 dB.
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! 6. Human detection and classification decision-making are .
interrelated in fundamentally different ways for high

L]

-_,'".j and low SNR transient signals.

'-ﬂ i

g 7. The variable positioning of transient signals in Experi-

- ment 2 caused decreased detection and classification

o performance, showing the participants’' reliance on

b position related clues. !
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3.5 ATTACHMENT A: STUDENT INSTRUCTIONS AND POST-EXPERIMENT
QUESTIONNAIRE

3.5.1 Instructions

The experiment you are about to start is a visual detec-
tion and identification task. You will be payed $5.00 per day
for your participation in the experiment with a possible bonus
of $2.00 per day added for good performance. Before you begin
each block of trials you will have a preview session to famil-
iarize yourself with the testing procedure and the target sig-
nals. The target signals will consist of patterns of bright
patches in a background of a randomly specked display. You will
examine three different target signals. Each signal displays
its own unique pattern of bright patches on the video monitor.
These three signals with different patterns are labelled A, B,
or C. Try to remember each pattern and associate its designated
label A, B, or C. During a preview session you will also
examine three displays showing only the background and not con-
taining any signal. These non-signals appear uniformly speckled
without any bright patches indicating a signal pattern. I will
guide you through the actual testing procedure during the first
preview session.

Once the preview session is completed, a formal testing
session will begin. During this testing you will be presented
these same three signals (A, B, and C); some other new signals
with different patterns; and some displays with no signals. The
brightness of the signals will vary; blending in some cases into
the speckled background. In some cases signal patterns will be
easy to see; in other cases, very difficult to discern from the
nonsignal speckled background. On each of these trials, you

will be asked if a signal is present. You will respond by

g g
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pushing the appropriate number key as (1: definitely no signal;
2: probably no signal; 3: probably a signal; 4: definitely a
signal). If you respond with 3 or 4 (probably a signal or
definitely a signal) you will be given an opportunity to iden-
tify which of the signals you think you are seeing. In those
cases you will respond by pressing the appropriate letter (A:
for signal A; B: for signal B; C: for signal C; and 0: for
other or new type of signal).

After you make your response, feedback will appear on the
display. If, in truth, the trial consisted of a known target
signal A, B, or C; then the appropriate letter (A, B, or C) will
be displayed on the monitor. If, in truth, the trial consisted
of a new type target signal or non-signal (no target present)
then the character "?" will appear on the monitor. When you are
ready to go on to the next trial, press the key labelled
"continue".

After 96 test trials are completed, your screen will
indicate that "block 1" is over. At that point, I will come in
to answer any of your questions regarding the experimental pro-
cedure. You will then go on to "block 2." The procedure will
consist of the same preview followed by 96 additional trials.
After "block 2" is completed, a final "block 3" will be per-
formed. Each block is expected to take 15 to 20 minutes; so the
entire session will last about 1 hour. The second day of test-
ing will proceed in a similar fashion to the first: three more
blocks of previews followed by testing. At the end of the
second day of testing, you will be asked to fill out a brief
questionnaire describing your experience.

3-50
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g Your performance bonus will be based on your ability to
detect and correctly intensify target signals. Remember some of
{ g the cases are extremely difficult--do not be discouraged--do the

best you can.
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3.5.2 POST EXPERIMENT QUESTIONNAIRE

1.

Did you see the target signal every time it was there?
Never 1 2 3 4 S 6 7 8 9 10 Always

Did you see any target signals when none were actually
present?

Rarely 1 2 3 4 5 6 7 8 9 10 Often

How did you decide that a target signal was present?

How well do you think you correctly identified the target

signal?

Type (A,B,C, § 0)?

Poorly 1 2 3 4 5 6 7 8 9 10 Extremely Well

How did you decide on the identity of the target signal?

Briefly describe target signal Tvpe A:

Briefly describe target signal Tvpe B:

Brieflv describe target signal Tvpe C:

R A O T T i S L T LA T T S RS Sty
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Briefly describe any new (i.e. "other'") target signal

type(s) observed:

Briefly describe the speckled background:

How often did you use an internal (remembered) verbal
description of the target signal to make decisions?

Never 1 2 3 4 5 6 7 8 9 10 Always
How often did you use internal (mental) pictures to make
decisions

Never 1 2 3 4 S 6 7 8 9 10 Always

Please make any comments or suggestions:

THANK YOU FOR YOUR PARTICIPATION.
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4.0 AUTOMATIC CLASSIFICATION RESEARCH

-
‘

5

]
.

3: The purpose of this feasibility research is to test a4 com-

- putational theory of an Asynchronous Syntactic Pattern (ASP;

o sensor. Its purpose is to sense the physical features of

W transients in real time and to interpret complex sounds as

e serial sequences of pulse features, i.e., as syntax or as

'2 syntactic events. In this sense, the ASP sensor is a transducer

~ of physical sensors, transforming their infinite sequentially

:ﬁ sampled data to a finite set of transient features which repeat
from time to time, forming a structured syntax with implicit

?E meaning for human operators with classification objectives.

jf The patterns are represented top-down as a generic classi-

.
"l

fier system hierarchy. Different types of pulses are considered
as independent entities. These entities broadly describe the

-

transient in general terms. As one moves down the hierarchy,
each generic entity is further described in terms of feature
attributes. Moving further down the hierarchy, each feature
attribute is described in terms of a vector of feature attribute
values. This vector of feature attribute values is referred to
as a feature pattern. At the bottom of the hierarchy is syntax.
3 The simplest representation at this level are binary state vari-
: ables representing time-ordered excitations and inhibitions of a
o feature pattern. More complex syntax, involving structured

RN pattern sequences, i.e., a rule-based grammar, is handled at a
higher level by creating a symbol for each syntax. At the

b »

bottom, it is either singular or a bit mapped time pattern,
commonly known as a binary state variable. There are many
advantages to this kind of transient representation, which is
beyond the scope of this report,
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At the top of sur lassifier system hierarchy, there are
four discrete pulse entities. These are (1) leading edyges, 2
correlated pulsed carriers, (3) singular pulsed carriers, and
{4) aperiodiv pulses. This selection is in no sense nptimized,
hut nevertheless represents a rational heginning for the feasi-
hility analvsis. In simplest terms, leading ledge pulse trains
are approximately step functions. They start by a jump in power
which 1s maintained for a variable period and either fade or are
abruptly turned off. Pulsed carriers are processes which are
periodic within randomly accessible time windows, and which have
at least three cycles of wave motion. Pulsed carriers mav be
arbitrarily frequency modulated, amplitude modulated, or time
patterned. Correlated pulse carriers are entities encompassing
one or more identical replications of a feature pattern. The
replications may occur on any time scale, may be predictable
periodic occurrences, or may be multipaths with few visible
replications. On the time-scale of available data, singular
pulsed carriers are those with no apparent replications. The
apparent singularity of events may not be real; the strategy is
to hold singular events long enough to exhaust the possibility
of associating their feature pattern with known groups, with
subgroups split off of known groups because of ambiguous identi-
fication, or with other singular events to form a new group.
Aperiodic events are residual events which fail the test for a
minimum number of cycles of wave motion. The implication is
that these events are more critically damped. Many passive
transient signals may fall in this category.

4.1 RESULTS OF AUTOMATIC CLASSIFICATION PROCESSING
The Asynchronous Syntactic Pattern (ASP) sensor algorithm

was programmed in FORTRAN for the Cray computer in order to test
its feasibility as an aid for computer assisted classification

4-2
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of acoustic transients. The data was run on the Naval Research

Laboratory Cray computer. This data made it possible to make .

real progress in evaluating the feasibility of the ASP sensor as
a transient classification tool, }

MR

The ASP algorithm starts at the top of the classifier

RS

hierarchy by first sensing leading edges by the character of the
o pulse at the beginning of such events. Six such events were
detected in the first six seconds of data and these will be
- described in more detail later. 1If the leading edge discriminant
. is false, ASP senses impulsive transients with at least three X
cycles of wave motion, which are called pulsed carriers. All of
the pulsed carriers detected in 6 seconds (about 50,000 data
points) are shown on Table 4-1. The attributes of the table are
record number, data point number, and four feature pattern attri-

%~y ¥ 0

butes. Those are each pulse's amplitude, average frequency

‘l (normalized to one at sample rate /2}, pulse shape (from 0, mini-

mum phase to 1, maximum phase delay of peak energy of the pulse),

- and frequency shift (normalized average frequency difference

between decadent back and ascendent front of the pulsed carrier;
! positive means rising carrier frequency). Table 4-1 shows that
N ASP reduced the raw data from about 50,000 data items to about
500 data items.

Feature attributes of pulse shape, frequency shift and

-~
:2 average frequency are taken as highest ranking keys for auto- o
.. matic classification of pulsed carriers, i.e., for grouping !
gt identical feature patterns in a three-dimensional feature space. j
This was implemented by transforming the three columns of key )

I features in Table 4-1 to an integer between 0 and 25, inclu- .
< sively. In that way we converted the key discriminants into an J
Py alphabetic string for efficient sorting of events with similar :
. feature patterns. 2
% 3
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Table 4-2. Pulsed Carriers Sorted by Feasture Pattern
‘. SOKTED DIRECTORY: EXTENSIONS ARE +Er FEATURE ATTRIBDUTES FOK CLASSIFILAT]INN
' FILENAME AND EXTENSION FORMAT:T FC ,yyy.FSF
.
N F: pulse shape Si1 ¢trequency shiét Fi1 average ¢‘requency
~ (Feature attributes F, S, AND F transéormed to range ' *o % o
A alphabet cheracter representation i1n ¢i1]le extension soOr® rteve:
s - (The content ot the ¢i1le: arrival ti1me 1n seconds of the pulse’
* FCit pulsed carrier <1 record ® yyyyt timedats ®
o
ALY f1 lew: pcB8I6e8Y
c . LAMM 6 les: pcBII99~
.. .BBA f1lew: pe 790226
. .CHX ¢1les: pc8910772
p. .CJO ¢1lew: pcBInTal
.DG} ¢1)lewt pCc8I0I47
_ . .0GW files: pcB877621 pcBYTI24
N .DIN $1les: pcBT1219
., LEVD f1lesw: pcBOlsLY
N ,i LEZD f1les: pc9L 1298
M .FLF ¢1les: pCY_719
.GCO ¢fi1les: pcB88TIC4
‘\ .HEM f1les: pcB4a1771
NN .HFW f1les: pcB6I8US pcB&TA449 pcB70049 pcB70OI1IT pcBB8I414
s 7 .HFG f1les: pcB841878
X _ .ICR files: pCcNL749
. }. DIHY filles: pPCROTERS
L JIHN f1les: pcBu1B76
+.JHF f1les: pcB6I8IY
~ L1127 f1les: pcB8732708
AR .IMX files: pcB89T1S
o hE LJIT files: pcB8&1227
) JJLE files: pcon124%
:‘; .JMW files: pcoO1OnZ4
» M .FAD files: pPcBOEILT70
- AR filles: pcB62134
 J FFX files: pPCRNIZ84
A .FHN files: pPCI1 3860
% Y b1k files: pCcI21073
\
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Table 4-3. Multiple Arrival Time Pattern of
Correlated Pulsed Carriers

v MULTIPLE ARRIVAL TIMES OF IDENTICAL FEATURE PATTERN
4
FEATURE PATTERN TIME (SEC) (From start of file)

3

DGN  4.423625 5.5605
Py HFW  3.934625 4.015125 4.102125 4.11125  4.90975
" KMQ 0.82425  2.33575
. LFW  3.771875 3.797625
a NKQ  0.81775  0.911625 1.16125  1.291125
R OLO  2.885 4.2415 6.358625
o QQ0  0.5475 1.01425

TNG  0.5225 5.94725
|i TNO  0.292875 0.785375S

2SO0  0.5755 0.891375
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g sonar, pumps, engines, propeller cavitation, and other cyclical
E i processes.
b ;:
{ An important feasibility result of this research is the
] possibility of using a transient feature sensor to resolve
& intermittently sensed interfering harmonic beat patterns. This
‘- may have important practical significance complementing more
% conventional spectral techniques, to be discussed later. One
- obvious implication is the much lower recognition differential,
:5 as compared with a conventional power detector. The essential
difference is that features can be sensed intermittently anytime
:, that the feature is dominant with respect to other interfering
( stimulus. Once it is sensed, it can be recognized from replica-
o tive measurement of its feature attributes.

-. In order to determine how the selected feature classifica-
. tion keys are distributed, i.e., whether uniformly distributed
over their range or concentrated, we prepared Table 4-4. The

~ pulse shape shows some concentration between H and T, with some
small bimodality at D. The Frequency Shift shows concentration

9. between F and Q. Frequency is multimodal with concentrations at

i K, M, 0, Q, and W.

<

= The two principal classification keys are pulse shape and

- frequency shift. These features were selected as keys in the

& order considered most invariant with respect to the scale of

.. source strength and propagations and also, on the physical

ﬁj grounds of being independent features. To test this idea, we
plotted in Figure 4-1 occurrences of scaled (P, S) values in

b feature space. In the range of feature space where these

N attributes are concentrated, they appear to be random and

N uniformly distributed, i.e., not functionally related.

2
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Table 4-4. Single Discrete Arrivals of Patterns
(Multiple Arrivals Not Counted)

NUMBER OF OCCURRENCES
OF FEATURE PATTERNS

_ PULSE FREQUENCY AVERAGE PATTERN
NN SHAPE SHIFT FREQUENCY (SCALED)
2 3 2 A
A “ 1 1 0 B
IR 2 3 0 o
. 4 1 2 D
2
! 2 2 0 E
- 1 5 2 F
. "'*
R 1 3 2 G
- 3 9 0 H
" 6 6 0 I
‘ 3 3 0 J
b 5 7 3 10 K
4 W
: ’ 7 5 2 L
R Y
(. 2 6 7 M
v,
W - 2 4 4 N
e 3 4 9 0
K W 7 3 1 p
! e
3
2. 4 14 Q
. :: 4 0 3 R
o 2 2 0 S
h 3 6 2 2 T
y 1 2 0 U
,l
:: ﬁ 1 0 0 A
. 1 1 7 W
s
5 0 0 3 X
¥ W
) 1 0 0 Y
)
}e 1 1 3 z
¥ v
Y
3 v
]
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b4 1
Y
X
W 1
v
u 1 1
T 1
S 1 1
R
Q 1 1 1
P 1 1 1
o 1 1 2
I~ 1 1 2
a
- |M 1 12 1 1
[V
Tl 1 1 1 3
w
> K 1 -3 1
\J
Z 1, 1 1 1
po)
o ]! 1 1 1 2
W
€ IH 1 3 1121
G 3 1
F 5 1 3 1
€ 1
0 1
C 1 1 1
8 1
A 2 1
Blciolelrlain|ilsxiLm]|[n]olrlalr Tlulviw]|x]y]:
PULSE SHAPE (P)
Figure 4-1. Relationship Between Frequency
Shift and Pulse Shape
4-13
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;7
. .
' Multiple correlations obtained using these two features
' are shown as numbers greater than one in Figure 4-1. No obvious
E :3 relationship or modality can be seen, although there is not
4 * enough data to be sure one way or the other. What can be seen
{ LN is that there are 33 correlated pulses using P and S as keys.
- This is compared to 26 correlated pulses, using three features
- in the order P (Pulse Shape), S (Frequency Shift), and F (Aver-
i age Frequency) as feature correlation keys, shown in Tables 4-2
and 4-3.
A
3 This means that adding Frequency as a feature removed about 20%
ﬁ of the (P, S) correlations as possible errors, suggesting an
) approximately 80% correlation of the (P, S) feature and actual
S (from targets) correlated pulses. Absolute interpretation of
n? - (P, S, F) actual correlated pulses is not possible to estimate
.. without a priori knowledge. It is expected to be correlated
] . more closely with actual pulses than is the lower ranking (P, S)
feature pattern; especially considering the plus or minus 2%
tolerance required for associating the frequency feature to two
or more pulses (covering approximately one half octave of fre-
\ quency band). Based on the (P, F) feature sense correlated
- pulses, there were 36 apparent correlations; on (S, F), 38
3 -~ apparent correlations,.
x
- One important aspect of adding features is that additional
Z - pulses are missed and true correlations are fragmented, in
2 exchange for much lower probability of falsely associating
; Zﬁ pulses. For that reason, care must be taken in expanding the
4 ) dimension of feature space; in carefully setting the sensitivity
:E ;.E of features; and rank ordering their application as key attri-
N " butes of correlated pulses. The features used in this feasibil-
NN ity study must be optimized based on empirical analysis of a
larger data base.
~
3
a 4-14
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RO

. On detecting a set of correlated pulse carriers, other

e

information is obtained which relates to a consistent interpre-

X R: tation of correlated pulses. Important to the identification
s harmonic patterns are the sequence of arrival times observed and
) b associated with a feature pattern; to the identification of

b e multipath arrivals time delays consistent with ocean depth and
2 v range. Amplitude information, as shown in Table 4-1, is

R obtained with each correlated pulse. Amplitude can be used to
g gauge the source or propagation distance, given appropriate

'ﬁ = environmental modeling.

"

A 4.2 INTERPRETATION OF CORRELATED PULSE CARRIERS

*

o We have demonstrated that an Asynchronous Syntactic

A h Pattern (ASP) sensor can efficiently reduce acoustic data t»
E long leading edge transients, modulated narrowband pulsed

-.

carriers, and broadband transients. One interesting observat:

- o made with the pulsed carriers was that their random occurrenc--
N s could be easily sensed as transients at much lower ampl:tulr
< levels than the transients used in the Psychophvsical Fxpe-
e gﬂ ment, i.e., at levels 15.5 dB less than those used 1n the
:} .' experiment. This was possible because the transients we--
2 ;: tinguished, not in the usual sense of sudden laryge am;’
2 Ve but on the basis of features similar to those used =~ » .-,
X o classificaiton. These were pulse shape, measuremen:
v b4 time relative to duration of the transient; (-
i “ measurement of chirp characteristic freguen.
o quency of the carrier.
)
2 %: The only requirement for identifvieyg o0y
:: - feature patterns is that the wavet .o+ .»
" o occasionally dominate 2 fow B 1.
B i5 possible because the meisar
§
A
N L
X
n
2
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P

, u designed to be measured effectively at emergent peak values and
4 at very low recognition differentials. Alternatively, coherent
! Ei stacking may be used to pull the transient out of the noise.
b Those feature patterns which replicate very precisely can be
’E, used to identify and very precisely measure source characteris-
‘S tics.
! g The algorithm for carrying out this experiment of feature
R . correlation was performed as part of the Cray Processing. It
4 Sj simply consisted of a linear stack holding the last 16 pulse
X carriers. If a new correlated pulse gets pushed onto the stack
X ?} soon enough, it will correlate based on the near identity of the
three measured features. This is accomplished on a three by
o sixteen element stack. The frequency and frequency shift cri-
‘ Ly teria was set at 2%; the pulse shape at 5%. Twenty-two correla-
X tions obtained by the Cray Experiment are shown on Table 4-5,
) i. One immediately takes note of the dominance of two different
X 5 pulsed carrier wave trains. The only exception was the corre-
; é& lated pair on record 87 point 1164. 1Its feature pattern is well
p - separated from the two pulse trains. With a time delay of 1.3
. %- seconds and an apparent reflection coefficient of 0.95, it could
n conceivably be a multipath event.
L

The pulse carrier wave trains were further analyzed to see
if some information about the source could be obtained. This
was done by determining the extent that the pulse train is
periodic, and therefore indicative of a harmonic pattern emitted

=g

from the source. By dividing one of the time intervals by an

&S

integer and taking that value as a prediction time period

3 ooy between pulses, the repeat time was tested by division into each
b ~ of the observed time delays. This was repeated by trial and
N ", error until numbers very close to integers were obtained for
s
p
.. 4-16
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Table 4-S.

FOINT

1920

1709

3449

2283

REFEAT AMFLITUDE

TIME

0. 2000
@.7340
0. 2000
2.0247
2. 2000
2.0773
0.0000
8.0835
2. 1668
2. 2000
2.0088
2.0923
0. 16956
0.02000
9.3I886
2.4133
0. 0000

.2022
2. 00008
@.7753
D.9361
0. 2000
1.2914
2. 20006
2.0316
2. 2000
0.0901
2. 0000
0.2396
0.3298
2.02000
@.1247

. 7643
@.4544
2. 0000
2.%024

INCORPORATED

Correlated Pulse Carriers by

5397.
3397.
8848.
11211,
6368.
7449Q.
8912.
&368.
7440.
6992.
8912.
6368.
7440,
9557.
8848.
11211.
6549.
6880.
7984.
8912.
744@,
7611.
S563X7.
6923,
S976.
6315,
6517.
6640.
6315,
6517,
7515.
6648.
6215,
6517.
3205.
3659.

AVERAGE
FREGNCY

9.3500
2.3500
©.437S
9.4375
8.4375
8.4375
8.437S5
B.4375
@.437S
@.437S
@.4375
@.4375
8.4375
@.4375
9.4375
B.43=735

. 2684
A.3684
@.4373
Q.4375
@.4375
@.4373
0.4775
@.3887
@. 3889
2.3889
@. 887
Q. 3889
a. 3887
@.:887
@.3887
@. 887
@.3889
@.z8eg?
@.38899
9.I889

Real-Time Stacked Feature Correlation

PULSE
SHAFE

a.5000
Q. 46520
0.5000
9.5000
0.3750
@a.375@
8.375@
a.3750
2.375a
2.3750
@a.375e
@.37%50
8.3750
2.5000
9.5000
9.5000
@.5789
9.5789
@.375@
2.3750
fn.37%0
2.250v
0.2500
8.5556
0.5556
@.5556
@.3556
8.53556
@.5556
0.3556
2.5556
8.555s6
@. 53556
A.5556
@.35556

9.5556

FRECNCY
SHIFT

-0. 1000
-0.098%
-3.12%0
-0.1252
~-0. 1000
-0. 1000
-0. 10800
-3. 1000
-0. 1000
-@.1000
-0. 1000
-0. 100
-@. 1000
-@.123@
-98. 1250
-0.1250
@.0114
0.8114
-0. 1000
-0. 1000
-@.100Q
-0.088Z3%2
-0.085%
-@.0250
-0.0250
~-0.02%0
-0.02502
-3.02%5aA
-0.02%0
-0.02%0
-@.02%0
-0.02%0
~-0.025e
-0.0250
-0.0250
-0.0250
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each observed repeat time differential. A basic program for
performing this analysis is given in Figure 4-2.

The result obtained in predictive timing of correlated
x- pulsed carriers is shown in Table 4-6. Referring back to Table
| 4-3 showing multiple arrival times, we note the close similarity
of HFW and LFW. The matrix of feature correlated time differen-
s> tials indicated that the predicted arrival times of HFW and LFW
were on the same wave train. This amounted to a total of 12

- v

correlated time differentials over a period of about 2.5

P Sl
AR

seconds. The other pattern, NKQ, was approximately 6 dB weaker

-
I’

and occurred more sporadically than HFW. It was sensed only 8

times; 6 times over a period of one second, but only 8 times

-
-

Y ;‘3 over the entire observation period of about one minute.
ﬂ , The repetition time of the HFW pulsed carrier is 3.0884
. ‘ msec; of the NKQ pulsed carrier, 3.4693 msec. The standard
k . deviation of pulse timing errors is .05 of the repetition time
E: ::'E,* for NKQ; .106 for HFW. The apparent precision of a pulse train
5 model for correlating pulses is .2 to .4 msec. The average
S period of NKQ is .643 msec; of HFW, .571 msec. The possibility
. of estimating pulsed carriers by a repetition time delayed wave-
E: form stack or by matched filtering is not beyond reasonable
- bounds.
T v
é :f 4.3 INTERPRETATION OF LEADING EDGE TRANSIENTS
‘i
% The leading edge transient detections were the type of
i transients used in the Pilot Psychophysical Experiement. They
f :E were the largest transients on the NSWC tape; on an average
e 15 dB larger than the pulsed carriers described in the preceding
l ¥ section. We used them as examples of extremely long (about 0.1
- T to 1.0 second) transient episodes. By contrast, the pulsed
-
o 3
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e NAME: '"'FULSENUM"
*J = INTGR FRAC OF F (1)

'PERIOD DIVSR MAKES G(I) INTEGER:

DIM F(64), G(64)
INPUT N
FOR I =1TON
INPUT F(I)
NEXT I
INPUT J
IF J = 0 THEN GOTO
PERIOD = F(1)/J

70

FOR I =1 TO N

G(I) = F(I)/PERIOD :
NEXT I
GOTO 33

INPUT SCALE

IF SCALE = 0 THEN GOTO 33
FORI =1TON

G(I) = F(I)/REPEAT :
NEXT 1
GOTO 70
END

Figure 4-2.

: REPEAT = PERIOD * SCALE :

INCORPORATED

F(1) ORDERED SMALLEST TO LARGEST

REPEAT IS REFINEMENT TRIAL & ERROR

: PRINT J,PERIOD

PRINT G(I)

PRINT PERIOD:SCALE.REPEAT

PRINT F(1),G(I)

Basic Program to Calculate Period of

Repetition for Intermittent Correlated Pulses

A B LA -

i® AR/
v .“‘ AR A A i i D Wy ('

" 1 -
0, ) A LA N
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Table 4-6. Analysis of Feature Correlated
Pulsed Peak Delay Time Differentials

- e

PULSED CARRIER PEAK TIME DIFFERENTIALS

a

-
. o

L d
i « NKQ: Estimated Repetition Time = 3.4693 Msec
h W
| Time Differential Peaks Differential
§ &
~ 0416 sec 11.99
o .0901 25.97
# .1247 35.94
- .2396 69.06
~ .3298 95.06
P .3643 105.01
’ . .4544 130.98
: ) .9024 260.11
g &
g HFW § LEW: Estimated Repetition Time = 3.0884 Msec
o !3 Time Differential Peaks Differential
.
. R .0088 (round off error) 2.85
L0247 8.00
3 ".; L0773 25.03
. .0835 27.04
y .0923 29.89
o .1608 52.07
o RN .1696 54.91
g < .3886 125.82
. % .4133% 133.82
b .7753 251.03
\ .9361 303.10
| &
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carriers were about 2 msec entities. We observed 6 of these
signals over a time period of about 2 minutes.

The experiment with Leading Edge transients consisted of
sensing the front edge of the signals with a step function; and

8

measuring the features of the front edge of the signal. These
are shown for the six signals in Table 4-7. The leading edge

3: feature values indicate that event 3 and 4 are closely

. correlated based on pulse shape, frequency shift and amplitude.
E{ They are not well correlated with frequency.

:5 An important part of the experiment was concerned with the
t 512 nodal binary state variable of energy excitation. We were
Eg interested in this as a very computationally efficient and

simple syntax for very long complicated signals. The sensi-
tivity in correlating signals 3 and 4 from the binary state

variable was remarkable, as seen in the binary correlation
matrix in Table 4-6. The correlation is 100% in terms of bit

E: masking of event 4 on 3. The result is slightly complicated by
the fact that event 3 has 12% more bits than event 4, The

~ typical correlation between patterns nearly matched in number of

- bits is between .3 and .6. The precise binary state variable

< pattern match between 3 and 4 is based on nearly the same time

~ span with signal certainty uniformly turned on. One interesting

o~ fact is the apparent consistency between feature patterns of

o events 3 and 4 based on pulse shape, frequency shift and ampli-

. tude measurements of the leading edge, and the bit mapped long

;S complex signal. One is lead to speculate that event 3 and event
4 are similar entities.
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Table 4-7. Leading Edge Transient Feature Pattern
and Binary State Variable of Energy Activation

RECORD POINT AMFPLITUDE AVERAGE PULSE FREGNCY
FREGNCY SHAPE SHIFT

53 2882 16613. 2.2381 2.3810 -0.08192

119 177 7627. @8.1250@ 0.9062 8.2299
130 19@5S J2325. Q.3437 B.0625 ~-B.1667
135 1296 32752. @.1765 2.02882 -0.1720
160 1634 9349, 0. 1667 B. 6667 2.1250
36 2148 29061. 9.1351 28.8919 2. 4091

ENERGY ACTIVATION SENSORY STATE VARIAELE

8080808BC681CAOVEATEEDD7FBAGBAAOF EQOLFFDFEQDB 1 IFFFEQO40000030360Q
FFFCBOOASDFFFFFEFFFE4ADOVA02BIFFFFFFFFDA4B1 2020200000003000023000

8000002000200000000057CEANANACVVA42VOBPADE BF 20400000002V B2B2D
FASA0000000000 1 LFEDFFFADA4R20 1 208200000000000803000000000400001 9

ABCOF QO0F F 800B0F FFFCO0000000000F FFFFFFFFQ00000000008000000000220
FFFFFFFFFFFFFFFFFF2000000000202000290909020000000000000000000020

88C0OF Q00F F 0Q0BQ0F FF F 0000000030 2BF FFFFFFF320000002000000202000000
FFFFFFFFFFFFFFFF 40000000000000302000000000300000000000000003N3023

8000800081 46502000EQA77E401 DB22000F CO 1 EDEF BFFE300003F 7C47E4DBG0000
FFFOQ117FDF 7EFFFDFFFFFFDSFAB@B000 1 SFFFEFF9BADBFDBAF EES2000000000

820200008202VVVVC DBVVVVVVVIVVVOVIE 2300000202020V AVBVOAAVD
FARBZOB0000VD0300300223V3BVRVOD30BCCDVVOBVOVVOVBZVVOVACVIVRVCB3VD

BINARY CORRELATIONS

1 2 = 4 S 6
1 168 7 96 81 12 13
2 37 $9 2% 13 S4q -}
3 %6 27 1435 129 70 12
4 81 12 129 129 77 | s

S 120 54 90 79 224 13

o
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4.4 CONCLUSIONS

This preliminary examination of data, indicates that our
theory of an Asynchronous Syntactic Pattern (ASP) sensor is
potentially capable of reducing synchronous data by at least a
factor of 100. This is assuming that all of the singular fea-
ture patterns would be retained and processed. Given the
requirement of interactive processing of only correlated events;
and the feasibility of machine correlating patterns and syntax
by our algorithm, the reduction factor of data storage and pro-
cessing is of the order of 500. Beyond computational feasi-
bility and data reduction possibilities, we have shown that use-
ful information about the source can be obtained and conveyed to
the human classifier. An automatic transient processor with
empirical AI and self-learning capabilities will probably be
essential in meeting future combat requirements of accurate
classification and rapid human response. It is interesting to
note that two long complex transient episodes were highly corre-
lated on the basis of a bit mapped syntactic state variable, and
independently on the basis of a feature space representation
only operating on the leading edge of the long transient. Pulse
shape and frequency agreed within a tolerance of 3%; and ampli-
tude agreed within a tolerance of 1%. The bit mapped energy
excitation masked 100%.

In pushing ahead with ASP, we plan to implement a neural
network model for the purpose of recognizing noisy syntax pat-
terns, for self-learning of new patterns, and for automatic
recall. Automatic recall could be used for recognizing hybrid
patterns obtained by appending the binary state variable with
human generated form entries. We should continue exploring the
capabilities of feature attributes as a front-end hierarchical
feature sensor. 1In particular, we should continue to explore in
depth the extraction of additional useful information about the
source,
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